This section defines Elastic Common Schema (ECS) fields—a common set of fields to be used when storing event data in Elasticsearch.
This is an exhaustive list, and fields listed here are not necessarily used by Auditbeat. The goal of ECS is to enable and encourage users of Elasticsearch to normalize their event data, so that they can better analyze, visualize, and correlate the data represented in their events.
See the ECS reference for more information.
-
@timestamp
-
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
type: date
example: 2016-05-23T08:05:34.853Z
required: True
-
labels
-
Custom key/value pairs. Can be used to add meta information to events. Should not contain nested objects. All values are stored as keyword. Example:
docker
andk8s
labels.type: object
example: {"application": "foo-bar", "env": "production"}
-
message
-
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
type: match_only_text
example: Hello World
-
tags
-
List of keywords used to tag each event.
type: keyword
example: ["production", "env2"]
The agent fields contain the data about the software entity, if any, that collects, detects, or observes events on a host, or takes measurements on a host. Examples include Beats. Agents may also run on observers. ECS agent.* fields shall be populated with details of the agent running on the host or observer where the event happened or the measurement was taken.
-
agent.build.original
-
Extended build information for the agent. This field is intended to contain any build information that a data source may provide, no specific formatting is required.
type: keyword
example: metricbeat version 7.6.0 (amd64), libbeat 7.6.0 [6a23e8f8f30f5001ba344e4e54d8d9cb82cb107c built 2020-02-05 23:10:10 +0000 UTC]
-
agent.ephemeral_id
-
Ephemeral identifier of this agent (if one exists). This id normally changes across restarts, but
agent.id
does not.type: keyword
example: 8a4f500f
-
agent.id
-
Unique identifier of this agent (if one exists). Example: For Beats this would be beat.id.
type: keyword
example: 8a4f500d
-
agent.name
-
Custom name of the agent. This is a name that can be given to an agent. This can be helpful if for example two Filebeat instances are running on the same host but a human readable separation is needed on which Filebeat instance data is coming from. If no name is given, the name is often left empty.
type: keyword
example: foo
-
agent.type
-
Type of the agent. The agent type always stays the same and should be given by the agent used. In case of Filebeat the agent would always be Filebeat also if two Filebeat instances are run on the same machine.
type: keyword
example: filebeat
-
agent.version
-
Version of the agent.
type: keyword
example: 6.0.0-rc2
An autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the internet.
-
as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
as.organization.name.text
-
type: match_only_text
A client is defined as the initiator of a network connection for events regarding sessions, connections, or bidirectional flow records. For TCP events, the client is the initiator of the TCP connection that sends the SYN packet(s). For other protocols, the client is generally the initiator or requestor in the network transaction. Some systems use the term "originator" to refer the client in TCP connections. The client fields describe details about the system acting as the client in the network event. Client fields are usually populated in conjunction with server fields. Client fields are generally not populated for packet-level events. Client / server representations can add semantic context to an exchange, which is helpful to visualize the data in certain situations. If your context falls in that category, you should still ensure that source and destination are filled appropriately.
-
client.address
-
Some event client addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
client.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
client.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
client.as.organization.name.text
-
type: match_only_text
-
client.bytes
-
Bytes sent from the client to the server.
type: long
example: 184
format: bytes
-
client.domain
-
The domain name of the client system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
type: keyword
example: foo.example.com
-
client.geo.city_name
-
City name.
type: keyword
example: Montreal
-
client.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
client.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
client.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
client.geo.country_name
-
Country name.
type: keyword
example: Canada
-
client.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
client.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
client.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
client.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
client.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
client.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
client.ip
-
IP address of the client (IPv4 or IPv6).
type: ip
-
client.mac
-
MAC address of the client. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
-
client.nat.ip
-
Translated IP of source based NAT sessions (e.g. internal client to internet). Typically connections traversing load balancers, firewalls, or routers.
type: ip
-
client.nat.port
-
Translated port of source based NAT sessions (e.g. internal client to internet). Typically connections traversing load balancers, firewalls, or routers.
type: long
format: string
-
client.packets
-
Packets sent from the client to the server.
type: long
example: 12
-
client.port
-
Port of the client.
type: long
format: string
-
client.registered_domain
-
The highest registered client domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
client.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
client.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
client.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
client.user.email
-
User email address.
type: keyword
-
client.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
client.user.full_name.text
-
type: match_only_text
-
client.user.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
client.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
client.user.group.name
-
Name of the group.
type: keyword
-
client.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
client.user.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
client.user.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
client.user.name.text
-
type: match_only_text
-
client.user.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
Fields related to the cloud or infrastructure the events are coming from.
-
cloud.account.id
-
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
type: keyword
example: 666777888999
-
cloud.account.name
-
The cloud account name or alias used to identify different entities in a multi-tenant environment. Examples: AWS account name, Google Cloud ORG display name.
type: keyword
example: elastic-dev
-
cloud.availability_zone
-
Availability zone in which this host, resource, or service is located.
type: keyword
example: us-east-1c
-
cloud.instance.id
-
Instance ID of the host machine.
type: keyword
example: i-1234567890abcdef0
-
cloud.instance.name
-
Instance name of the host machine.
type: keyword
-
cloud.machine.type
-
Machine type of the host machine.
type: keyword
example: t2.medium
-
cloud.origin.account.id
-
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
type: keyword
example: 666777888999
-
cloud.origin.account.name
-
The cloud account name or alias used to identify different entities in a multi-tenant environment. Examples: AWS account name, Google Cloud ORG display name.
type: keyword
example: elastic-dev
-
cloud.origin.availability_zone
-
Availability zone in which this host, resource, or service is located.
type: keyword
example: us-east-1c
-
cloud.origin.instance.id
-
Instance ID of the host machine.
type: keyword
example: i-1234567890abcdef0
-
cloud.origin.instance.name
-
Instance name of the host machine.
type: keyword
-
cloud.origin.machine.type
-
Machine type of the host machine.
type: keyword
example: t2.medium
-
cloud.origin.project.id
-
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
type: keyword
example: my-project
-
cloud.origin.project.name
-
The cloud project name. Examples: Google Cloud Project name, Azure Project name.
type: keyword
example: my project
-
cloud.origin.provider
-
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
type: keyword
example: aws
-
cloud.origin.region
-
Region in which this host, resource, or service is located.
type: keyword
example: us-east-1
-
cloud.origin.service.name
-
The cloud service name is intended to distinguish services running on different platforms within a provider, eg AWS EC2 vs Lambda, GCP GCE vs App Engine, Azure VM vs App Server. Examples: app engine, app service, cloud run, fargate, lambda.
type: keyword
example: lambda
-
cloud.project.id
-
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
type: keyword
example: my-project
-
cloud.project.name
-
The cloud project name. Examples: Google Cloud Project name, Azure Project name.
type: keyword
example: my project
-
cloud.provider
-
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
type: keyword
example: aws
-
cloud.region
-
Region in which this host, resource, or service is located.
type: keyword
example: us-east-1
-
cloud.service.name
-
The cloud service name is intended to distinguish services running on different platforms within a provider, eg AWS EC2 vs Lambda, GCP GCE vs App Engine, Azure VM vs App Server. Examples: app engine, app service, cloud run, fargate, lambda.
type: keyword
example: lambda
-
cloud.target.account.id
-
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
type: keyword
example: 666777888999
-
cloud.target.account.name
-
The cloud account name or alias used to identify different entities in a multi-tenant environment. Examples: AWS account name, Google Cloud ORG display name.
type: keyword
example: elastic-dev
-
cloud.target.availability_zone
-
Availability zone in which this host, resource, or service is located.
type: keyword
example: us-east-1c
-
cloud.target.instance.id
-
Instance ID of the host machine.
type: keyword
example: i-1234567890abcdef0
-
cloud.target.instance.name
-
Instance name of the host machine.
type: keyword
-
cloud.target.machine.type
-
Machine type of the host machine.
type: keyword
example: t2.medium
-
cloud.target.project.id
-
The cloud project identifier. Examples: Google Cloud Project id, Azure Project id.
type: keyword
example: my-project
-
cloud.target.project.name
-
The cloud project name. Examples: Google Cloud Project name, Azure Project name.
type: keyword
example: my project
-
cloud.target.provider
-
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
type: keyword
example: aws
-
cloud.target.region
-
Region in which this host, resource, or service is located.
type: keyword
example: us-east-1
-
cloud.target.service.name
-
The cloud service name is intended to distinguish services running on different platforms within a provider, eg AWS EC2 vs Lambda, GCP GCE vs App Engine, Azure VM vs App Server. Examples: app engine, app service, cloud run, fargate, lambda.
type: keyword
example: lambda
These fields contain information about binary code signatures.
-
code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
Container fields are used for meta information about the specific container that is the source of information. These fields help correlate data based containers from any runtime.
-
container.cpu.usage
-
Percent CPU used which is normalized by the number of CPU cores and it ranges from 0 to 1. Scaling factor: 1000.
type: scaled_float
-
container.disk.read.bytes
-
The total number of bytes (gauge) read successfully (aggregated from all disks) since the last metric collection.
type: long
-
container.disk.write.bytes
-
The total number of bytes (gauge) written successfully (aggregated from all disks) since the last metric collection.
type: long
-
container.id
-
Unique container id.
type: keyword
-
container.image.name
-
Name of the image the container was built on.
type: keyword
-
container.image.tag
-
Container image tags.
type: keyword
-
container.labels
-
Image labels.
type: object
-
container.memory.usage
-
Memory usage percentage and it ranges from 0 to 1. Scaling factor: 1000.
type: scaled_float
-
container.name
-
Container name.
type: keyword
-
container.network.egress.bytes
-
The number of bytes (gauge) sent out on all network interfaces by the container since the last metric collection.
type: long
-
container.network.ingress.bytes
-
The number of bytes received (gauge) on all network interfaces by the container since the last metric collection.
type: long
-
container.runtime
-
Runtime managing this container.
type: keyword
example: docker
The data_stream fields take part in defining the new data stream naming scheme.
In the new data stream naming scheme the value of the data stream fields combine to the name of the actual data stream in the following manner: {data_stream.type}-{data_stream.dataset}-{data_stream.namespace}
. This means the fields can only contain characters that are valid as part of names of data streams. More details about this can be found in this blog post.
An Elasticsearch data stream consists of one or more backing indices, and a data stream name forms part of the backing indices names. Due to this convention, data streams must also follow index naming restrictions. For example, data stream names cannot include \
, /
, *
, ?
, "
, <
, >
, |
, ` ` (space character), ,
, or #
. Please see the Elasticsearch reference for additional restrictions.
-
data_stream.dataset
-
The field can contain anything that makes sense to signify the source of the data. Examples include
nginx.access
,prometheus
,endpoint
etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value.event.dataset
should have the same value asdata_stream.dataset
. Beyond the Elasticsearch data stream naming criteria noted above, thedataset
value has additional restrictions: * Must not contain-
* No longer than 100 characterstype: constant_keyword
example: nginx.access
-
data_stream.namespace
-
A user defined namespace. Namespaces are useful to allow grouping of data. Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with
default
. If no value is used, it falls back todefault
. Beyond the Elasticsearch index naming criteria noted above,namespace
value has the additional restrictions: * Must not contain-
* No longer than 100 characterstype: constant_keyword
example: production
-
data_stream.type
-
An overarching type for the data stream. Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
type: constant_keyword
example: logs
Destination fields capture details about the receiver of a network exchange/packet. These fields are populated from a network event, packet, or other event containing details of a network transaction. Destination fields are usually populated in conjunction with source fields. The source and destination fields are considered the baseline and should always be filled if an event contains source and destination details from a network transaction. If the event also contains identification of the client and server roles, then the client and server fields should also be populated.
-
destination.address
-
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
destination.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
destination.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
destination.as.organization.name.text
-
type: match_only_text
-
destination.bytes
-
Bytes sent from the destination to the source.
type: long
example: 184
format: bytes
-
destination.domain
-
The domain name of the destination system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
type: keyword
example: foo.example.com
-
destination.geo.city_name
-
City name.
type: keyword
example: Montreal
-
destination.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
destination.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
destination.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
destination.geo.country_name
-
Country name.
type: keyword
example: Canada
-
destination.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
destination.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
destination.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
destination.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
destination.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
destination.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
destination.ip
-
IP address of the destination (IPv4 or IPv6).
type: ip
-
destination.mac
-
MAC address of the destination. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
-
destination.nat.ip
-
Translated ip of destination based NAT sessions (e.g. internet to private DMZ) Typically used with load balancers, firewalls, or routers.
type: ip
-
destination.nat.port
-
Port the source session is translated to by NAT Device. Typically used with load balancers, firewalls, or routers.
type: long
format: string
-
destination.packets
-
Packets sent from the destination to the source.
type: long
example: 12
-
destination.port
-
Port of the destination.
type: long
format: string
-
destination.registered_domain
-
The highest registered destination domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
destination.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
destination.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
destination.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
destination.user.email
-
User email address.
type: keyword
-
destination.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
destination.user.full_name.text
-
type: match_only_text
-
destination.user.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
destination.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
destination.user.group.name
-
Name of the group.
type: keyword
-
destination.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
destination.user.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
destination.user.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
destination.user.name.text
-
type: match_only_text
-
destination.user.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
These fields contain information about code libraries dynamically loaded into processes.
Many operating systems refer to "shared code libraries" with different names, but this field set refers to all of the following:
* Dynamic-link library (.dll
) commonly used on Windows
* Shared Object (.so
) commonly used on Unix-like operating systems
* Dynamic library (.dylib
) commonly used on macOS
-
dll.code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
dll.code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
dll.code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
dll.code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
dll.code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
dll.code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
dll.code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
dll.code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
dll.code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
-
dll.hash.md5
-
MD5 hash.
type: keyword
-
dll.hash.sha1
-
SHA1 hash.
type: keyword
-
dll.hash.sha256
-
SHA256 hash.
type: keyword
-
dll.hash.sha512
-
SHA512 hash.
type: keyword
-
dll.hash.ssdeep
-
SSDEEP hash.
type: keyword
-
dll.name
-
Name of the library. This generally maps to the name of the file on disk.
type: keyword
example: kernel32.dll
-
dll.path
-
Full file path of the library.
type: keyword
example: C:\Windows\System32\kernel32.dll
-
dll.pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
dll.pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
dll.pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
dll.pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
dll.pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
dll.pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
dll.pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
Fields describing DNS queries and answers.
DNS events should either represent a single DNS query prior to getting answers (dns.type:query
) or they should represent a full exchange and contain the query details as well as all of the answers that were provided for this query (dns.type:answer
).
-
dns.answers
-
An array containing an object for each answer section returned by the server. The main keys that should be present in these objects are defined by ECS. Records that have more information may contain more keys than what ECS defines. Not all DNS data sources give all details about DNS answers. At minimum, answer objects must contain the
data
key. If more information is available, map as much of it to ECS as possible, and add any additional fields to the answer objects as custom fields.type: object
-
dns.answers.class
-
The class of DNS data contained in this resource record.
type: keyword
example: IN
-
dns.answers.data
-
The data describing the resource. The meaning of this data depends on the type and class of the resource record.
type: keyword
example: 10.10.10.10
-
dns.answers.name
-
The domain name to which this resource record pertains. If a chain of CNAME is being resolved, each answer’s
name
should be the one that corresponds with the answer’sdata
. It should not simply be the originalquestion.name
repeated.type: keyword
example: www.example.com
-
dns.answers.ttl
-
The time interval in seconds that this resource record may be cached before it should be discarded. Zero values mean that the data should not be cached.
type: long
example: 180
-
dns.answers.type
-
The type of data contained in this resource record.
type: keyword
example: CNAME
-
dns.header_flags
-
Array of 2 letter DNS header flags. Expected values are: AA, TC, RD, RA, AD, CD, DO.
type: keyword
example: ["RD", "RA"]
-
dns.id
-
The DNS packet identifier assigned by the program that generated the query. The identifier is copied to the response.
type: keyword
example: 62111
-
dns.op_code
-
The DNS operation code that specifies the kind of query in the message. This value is set by the originator of a query and copied into the response.
type: keyword
example: QUERY
-
dns.question.class
-
The class of records being queried.
type: keyword
example: IN
-
dns.question.name
-
The name being queried. If the name field contains non-printable characters (below 32 or above 126), those characters should be represented as escaped base 10 integers (\DDD). Back slashes and quotes should be escaped. Tabs, carriage returns, and line feeds should be converted to \t, \r, and \n respectively.
type: keyword
example: www.example.com
-
dns.question.registered_domain
-
The highest registered domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
dns.question.subdomain
-
The subdomain is all of the labels under the registered_domain. If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: www
-
dns.question.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
dns.question.type
-
The type of record being queried.
type: keyword
example: AAAA
-
dns.resolved_ip
-
Array containing all IPs seen in
answers.data
. Theanswers
array can be difficult to use, because of the variety of data formats it can contain. Extracting all IP addresses seen in there todns.resolved_ip
makes it possible to index them as IP addresses, and makes them easier to visualize and query for.type: ip
example: ["10.10.10.10", "10.10.10.11"]
-
dns.response_code
-
The DNS response code.
type: keyword
example: NOERROR
-
dns.type
-
The type of DNS event captured, query or answer. If your source of DNS events only gives you DNS queries, you should only create dns events of type
dns.type:query
. If your source of DNS events gives you answers as well, you should create one event per query (optionally as soon as the query is seen). And a second event containing all query details as well as an array of answers.type: keyword
example: answer
Meta-information specific to ECS.
-
ecs.version
-
ECS version this event conforms to.
ecs.version
is a required field and must exist in all events. When querying across multiple indices — which may conform to slightly different ECS versions — this field lets integrations adjust to the schema version of the events.type: keyword
example: 1.0.0
required: True
These fields contain Linux Executable Linkable Format (ELF) metadata.
-
elf.architecture
-
Machine architecture of the ELF file.
type: keyword
example: x86-64
-
elf.byte_order
-
Byte sequence of ELF file.
type: keyword
example: Little Endian
-
elf.cpu_type
-
CPU type of the ELF file.
type: keyword
example: Intel
-
elf.creation_date
-
Extracted when possible from the file’s metadata. Indicates when it was built or compiled. It can also be faked by malware creators.
type: date
-
elf.exports
-
List of exported element names and types.
type: flattened
-
elf.header.abi_version
-
Version of the ELF Application Binary Interface (ABI).
type: keyword
-
elf.header.class
-
Header class of the ELF file.
type: keyword
-
elf.header.data
-
Data table of the ELF header.
type: keyword
-
elf.header.entrypoint
-
Header entrypoint of the ELF file.
type: long
format: string
-
elf.header.object_version
-
"0x1" for original ELF files.
type: keyword
-
elf.header.os_abi
-
Application Binary Interface (ABI) of the Linux OS.
type: keyword
-
elf.header.type
-
Header type of the ELF file.
type: keyword
-
elf.header.version
-
Version of the ELF header.
type: keyword
-
elf.imports
-
List of imported element names and types.
type: flattened
-
elf.sections
-
An array containing an object for each section of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.sections.*
.type: nested
-
elf.sections.chi2
-
Chi-square probability distribution of the section.
type: long
format: number
-
elf.sections.entropy
-
Shannon entropy calculation from the section.
type: long
format: number
-
elf.sections.flags
-
ELF Section List flags.
type: keyword
-
elf.sections.name
-
ELF Section List name.
type: keyword
-
elf.sections.physical_offset
-
ELF Section List offset.
type: keyword
-
elf.sections.physical_size
-
ELF Section List physical size.
type: long
format: bytes
-
elf.sections.type
-
ELF Section List type.
type: keyword
-
elf.sections.virtual_address
-
ELF Section List virtual address.
type: long
format: string
-
elf.sections.virtual_size
-
ELF Section List virtual size.
type: long
format: string
-
elf.segments
-
An array containing an object for each segment of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.segments.*
.type: nested
-
elf.segments.sections
-
ELF object segment sections.
type: keyword
-
elf.segments.type
-
ELF object segment type.
type: keyword
-
elf.shared_libraries
-
List of shared libraries used by this ELF object.
type: keyword
-
elf.telfhash
-
telfhash symbol hash for ELF file.
type: keyword
These fields can represent errors of any kind. Use them for errors that happen while fetching events or in cases where the event itself contains an error.
-
error.code
-
Error code describing the error.
type: keyword
-
error.id
-
Unique identifier for the error.
type: keyword
-
error.message
-
Error message.
type: match_only_text
-
error.stack_trace
-
The stack trace of this error in plain text.
type: wildcard
-
error.stack_trace.text
-
type: match_only_text
-
error.type
-
The type of the error, for example the class name of the exception.
type: keyword
example: java.lang.NullPointerException
The event fields are used for context information about the log or metric event itself.
A log is defined as an event containing details of something that happened. Log events must include the time at which the thing happened. Examples of log events include a process starting on a host, a network packet being sent from a source to a destination, or a network connection between a client and a server being initiated or closed. A metric is defined as an event containing one or more numerical measurements and the time at which the measurement was taken. Examples of metric events include memory pressure measured on a host and device temperature. See the event.kind
definition in this section for additional details about metric and state events.
-
event.action
-
The action captured by the event. This describes the information in the event. It is more specific than
event.category
. Examples aregroup-add
,process-started
,file-created
. The value is normally defined by the implementer.type: keyword
example: user-password-change
-
event.agent_id_status
-
Agents are normally responsible for populating the
agent.id
field value. If the system receiving events is capable of validating the value based on authentication information for the client then this field can be used to reflect the outcome of that validation. For example if the agent’s connection is authenticated with mTLS and the client cert contains the ID of the agent to which the cert was issued then theagent.id
value in events can be checked against the certificate. If the values match thenevent.agent_id_status: verified
is added to the event, otherwise one of the other allowed values should be used. If no validation is performed then the field should be omitted. The allowed values are:verified
- Theagent.id
field value matches expected value obtained from auth metadata.mismatch
- Theagent.id
field value does not match the expected value obtained from auth metadata.missing
- There was noagent.id
field in the event to validate.auth_metadata_missing
- There was no auth metadata or it was missing information about the agent ID.type: keyword
example: verified
-
event.category
-
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy.
event.category
represents the "big buckets" of ECS categories. For example, filtering onevent.category:process
yields all events relating to process activity. This field is closely related toevent.type
, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.type: keyword
example: authentication
-
event.code
-
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
type: keyword
example: 4648
-
event.created
-
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent’s or pipeline’s ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
type: date
example: 2016-05-23T08:05:34.857Z
-
event.dataset
-
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It’s recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
type: keyword
example: apache.access
-
event.duration
-
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
type: long
format: duration
-
event.end
-
event.end contains the date when the event ended or when the activity was last observed.
type: date
-
event.hash
-
Hash (perhaps logstash fingerprint) of raw field to be able to demonstrate log integrity.
type: keyword
example: 123456789012345678901234567890ABCD
-
event.id
-
Unique ID to describe the event.
type: keyword
example: 8a4f500d
-
event.ingested
-
Timestamp when an event arrived in the central data store. This is different from
@timestamp
, which is when the event originally occurred. It’s also different fromevent.created
, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this:@timestamp
<event.created
<event.ingested
.type: date
example: 2016-05-23T08:05:35.101Z
-
event.kind
-
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy.
event.kind
gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.type: keyword
example: alert
-
event.module
-
Name of the module this data is coming from. If your monitoring agent supports the concept of modules or plugins to process events of a given source (e.g. Apache logs),
event.module
should contain the name of this module.type: keyword
example: apache
-
event.original
-
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from
_source
. If users wish to override this and index this field, please seeField data types
in theElasticsearch Reference
.type: keyword
example: Sep 19 08:26:10 host CEF:0|Security| threatmanager|1.0|100| worm successfully stopped|10|src=10.0.0.1 dst=2.1.2.2spt=1232
Field is not indexed.
-
event.outcome
-
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy.
event.outcome
simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values ofevent.outcome
, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events withevent.type:info
, or any events for which an outcome does not make logical sense.type: keyword
example: success
-
event.provider
-
Source of the event. Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
type: keyword
example: kernel
-
event.reason
-
Reason why this event happened, according to the source. This describes the why of a particular action or outcome captured in the event. Where
event.action
captures the action from the event,event.reason
describes why that action was taken. For example, a web proxy with anevent.action
which denied the request may also populateevent.reason
with the reason why (e.g.blocked site
).type: keyword
example: Terminated an unexpected process
-
event.reference
-
Reference URL linking to additional information about this event. This URL links to a static definition of this event. Alert events, indicated by
event.kind:alert
, are a common use case for this field.type: keyword
-
event.risk_score
-
Risk score or priority of the event (e.g. security solutions). Use your system’s original value here.
type: float
-
event.risk_score_norm
-
Normalized risk score or priority of the event, on a scale of 0 to 100. This is mainly useful if you use more than one system that assigns risk scores, and you want to see a normalized value across all systems.
type: float
-
event.sequence
-
Sequence number of the event. The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regardless of the timestamp precision.
type: long
format: string
-
event.severity
-
The numeric severity of the event according to your event source. What the different severity values mean can be different between sources and use cases. It’s up to the implementer to make sure severities are consistent across events from the same source. The Syslog severity belongs in
log.syslog.severity.code
.event.severity
is meant to represent the severity according to the event source (e.g. firewall, IDS). If the event source does not publish its own severity, you may optionally copy thelog.syslog.severity.code
toevent.severity
.type: long
example: 7
format: string
-
event.start
-
event.start contains the date when the event started or when the activity was first observed.
type: date
-
event.timezone
-
This field should be populated when the event’s timestamp does not include timezone information already (e.g. default Syslog timestamps). It’s optional otherwise. Acceptable timezone formats are: a canonical ID (e.g. "Europe/Amsterdam"), abbreviated (e.g. "EST") or an HH:mm differential (e.g. "-05:00").
type: keyword
-
event.type
-
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy.
event.type
represents a categorization "sub-bucket" that, when used along with theevent.category
field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.type: keyword
-
event.url
-
URL linking to an external system to continue investigation of this event. This URL links to another system where in-depth investigation of the specific occurrence of this event can take place. Alert events, indicated by
event.kind:alert
, are a common use case for this field.type: keyword
example: https://mysystem.example.com/alert/5271dedb-f5b0-4218-87f0-4ac4870a38fe
The user fields describe information about the function as a service that is relevant to the event.
-
faas.coldstart
-
Boolean value indicating a cold start of a function.
type: boolean
-
faas.execution
-
The execution ID of the current function execution.
type: keyword
example: af9d5aa4-a685-4c5f-a22b-444f80b3cc28
-
faas.trigger
-
Details about the function trigger.
type: nested
-
faas.trigger.request_id
-
The ID of the trigger request , message, event, etc.
type: keyword
example: 123456789
-
faas.trigger.type
-
The trigger for the function execution. Expected values are: * http * pubsub * datasource * timer * other
type: keyword
example: http
A file is defined as a set of information that has been created on, or has existed on a filesystem. File objects can be associated with host events, network events, and/or file events (e.g., those produced by File Integrity Monitoring [FIM] products or services). File fields provide details about the affected file associated with the event or metric.
-
file.accessed
-
Last time the file was accessed. Note that not all filesystems keep track of access time.
type: date
-
file.attributes
-
Array of file attributes. Attributes names will vary by platform. Here’s a non-exhaustive list of values that are expected in this field: archive, compressed, directory, encrypted, execute, hidden, read, readonly, system, write.
type: keyword
example: ["readonly", "system"]
-
file.code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
file.code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
file.code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
file.code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
file.code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
file.code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
file.code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
file.code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
file.code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
-
file.created
-
File creation time. Note that not all filesystems store the creation time.
type: date
-
file.ctime
-
Last time the file attributes or metadata changed. Note that changes to the file content will update
mtime
. This impliesctime
will be adjusted at the same time, sincemtime
is an attribute of the file.type: date
-
file.device
-
Device that is the source of the file.
type: keyword
example: sda
-
file.directory
-
Directory where the file is located. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice
-
file.drive_letter
-
Drive letter where the file is located. This field is only relevant on Windows. The value should be uppercase, and not include the colon.
type: keyword
example: C
-
file.elf.architecture
-
Machine architecture of the ELF file.
type: keyword
example: x86-64
-
file.elf.byte_order
-
Byte sequence of ELF file.
type: keyword
example: Little Endian
-
file.elf.cpu_type
-
CPU type of the ELF file.
type: keyword
example: Intel
-
file.elf.creation_date
-
Extracted when possible from the file’s metadata. Indicates when it was built or compiled. It can also be faked by malware creators.
type: date
-
file.elf.exports
-
List of exported element names and types.
type: flattened
-
file.elf.header.abi_version
-
Version of the ELF Application Binary Interface (ABI).
type: keyword
-
file.elf.header.class
-
Header class of the ELF file.
type: keyword
-
file.elf.header.data
-
Data table of the ELF header.
type: keyword
-
file.elf.header.entrypoint
-
Header entrypoint of the ELF file.
type: long
format: string
-
file.elf.header.object_version
-
"0x1" for original ELF files.
type: keyword
-
file.elf.header.os_abi
-
Application Binary Interface (ABI) of the Linux OS.
type: keyword
-
file.elf.header.type
-
Header type of the ELF file.
type: keyword
-
file.elf.header.version
-
Version of the ELF header.
type: keyword
-
file.elf.imports
-
List of imported element names and types.
type: flattened
-
file.elf.sections
-
An array containing an object for each section of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.sections.*
.type: nested
-
file.elf.sections.chi2
-
Chi-square probability distribution of the section.
type: long
format: number
-
file.elf.sections.entropy
-
Shannon entropy calculation from the section.
type: long
format: number
-
file.elf.sections.flags
-
ELF Section List flags.
type: keyword
-
file.elf.sections.name
-
ELF Section List name.
type: keyword
-
file.elf.sections.physical_offset
-
ELF Section List offset.
type: keyword
-
file.elf.sections.physical_size
-
ELF Section List physical size.
type: long
format: bytes
-
file.elf.sections.type
-
ELF Section List type.
type: keyword
-
file.elf.sections.virtual_address
-
ELF Section List virtual address.
type: long
format: string
-
file.elf.sections.virtual_size
-
ELF Section List virtual size.
type: long
format: string
-
file.elf.segments
-
An array containing an object for each segment of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.segments.*
.type: nested
-
file.elf.segments.sections
-
ELF object segment sections.
type: keyword
-
file.elf.segments.type
-
ELF object segment type.
type: keyword
-
file.elf.shared_libraries
-
List of shared libraries used by this ELF object.
type: keyword
-
file.elf.telfhash
-
telfhash symbol hash for ELF file.
type: keyword
-
file.extension
-
File extension, excluding the leading dot. Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
-
file.fork_name
-
A fork is additional data associated with a filesystem object. On Linux, a resource fork is used to store additional data with a filesystem object. A file always has at least one fork for the data portion, and additional forks may exist. On NTFS, this is analogous to an Alternate Data Stream (ADS), and the default data stream for a file is just called $DATA. Zone.Identifier is commonly used by Windows to track contents downloaded from the Internet. An ADS is typically of the form:
C:\path\to\filename.extension:some_fork_name
, andsome_fork_name
is the value that should populatefork_name
.filename.extension
should populatefile.name
, andextension
should populatefile.extension
. The full path,file.path
, will include the fork name.type: keyword
example: Zone.Identifer
-
file.gid
-
Primary group ID (GID) of the file.
type: keyword
example: 1001
-
file.group
-
Primary group name of the file.
type: keyword
example: alice
-
file.hash.md5
-
MD5 hash.
type: keyword
-
file.hash.sha1
-
SHA1 hash.
type: keyword
-
file.hash.sha256
-
SHA256 hash.
type: keyword
-
file.hash.sha512
-
SHA512 hash.
type: keyword
-
file.hash.ssdeep
-
SSDEEP hash.
type: keyword
-
file.inode
-
Inode representing the file in the filesystem.
type: keyword
example: 256383
-
file.mime_type
-
MIME type should identify the format of the file or stream of bytes using IANA official types, where possible. When more than one type is applicable, the most specific type should be used.
type: keyword
-
file.mode
-
Mode of the file in octal representation.
type: keyword
example: 0640
-
file.mtime
-
Last time the file content was modified.
type: date
-
file.name
-
Name of the file including the extension, without the directory.
type: keyword
example: example.png
-
file.owner
-
File owner’s username.
type: keyword
example: alice
-
file.path
-
Full path to the file, including the file name. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice/example.png
-
file.path.text
-
type: match_only_text
-
file.pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
file.pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
file.pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
file.pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
file.pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
file.pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
file.pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
-
file.size
-
File size in bytes. Only relevant when
file.type
is "file".type: long
example: 16384
-
file.target_path
-
Target path for symlinks.
type: keyword
-
file.target_path.text
-
type: match_only_text
-
file.type
-
File type (file, dir, or symlink).
type: keyword
example: file
-
file.uid
-
The user ID (UID) or security identifier (SID) of the file owner.
type: keyword
example: 1001
-
file.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
file.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
file.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
file.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
file.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
file.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
file.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
file.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
file.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
file.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
file.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
file.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
file.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
file.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
file.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
file.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
file.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
file.x509.subject.country
-
List of country © code
type: keyword
example: US
-
file.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
file.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
file.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
file.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
file.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
file.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
Geo fields can carry data about a specific location related to an event. This geolocation information can be derived from techniques such as Geo IP, or be user-supplied.
-
geo.city_name
-
City name.
type: keyword
example: Montreal
-
geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
geo.country_name
-
Country name.
type: keyword
example: Canada
-
geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
geo.region_name
-
Region name.
type: keyword
example: Quebec
-
geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
The group fields are meant to represent groups that are relevant to the event.
-
group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
group.name
-
Name of the group.
type: keyword
The hash fields represent different bitwise hash algorithms and their values. Field names for common hashes (e.g. MD5, SHA1) are predefined. Add fields for other hashes by lowercasing the hash algorithm name and using underscore separators as appropriate (snake case, e.g. sha3_512). Note that this fieldset is used for common hashes that may be computed over a range of generic bytes. Entity-specific hashes such as ja3 or imphash are placed in the fieldsets to which they relate (tls and pe, respectively).
-
hash.md5
-
MD5 hash.
type: keyword
-
hash.sha1
-
SHA1 hash.
type: keyword
-
hash.sha256
-
SHA256 hash.
type: keyword
-
hash.sha512
-
SHA512 hash.
type: keyword
-
hash.ssdeep
-
SSDEEP hash.
type: keyword
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
-
host.architecture
-
Operating system architecture.
type: keyword
example: x86_64
-
host.cpu.usage
-
Percent CPU used which is normalized by the number of CPU cores and it ranges from 0 to 1. Scaling factor: 1000. For example: For a two core host, this value should be the average of the two cores, between 0 and 1.
type: scaled_float
-
host.disk.read.bytes
-
The total number of bytes (gauge) read successfully (aggregated from all disks) since the last metric collection.
type: long
-
host.disk.write.bytes
-
The total number of bytes (gauge) written successfully (aggregated from all disks) since the last metric collection.
type: long
-
host.domain
-
Name of the domain of which the host is a member. For example, on Windows this could be the host’s Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host’s LDAP provider.
type: keyword
example: CONTOSO
-
host.geo.city_name
-
City name.
type: keyword
example: Montreal
-
host.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
host.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
host.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
host.geo.country_name
-
Country name.
type: keyword
example: Canada
-
host.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
host.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
host.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
host.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
host.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
host.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
host.hostname
-
Hostname of the host. It normally contains what the
hostname
command returns on the host machine.type: keyword
-
host.id
-
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of
beat.name
.type: keyword
-
host.ip
-
Host ip addresses.
type: ip
-
host.mac
-
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: ["00-00-5E-00-53-23", "00-00-5E-00-53-24"]
-
host.name
-
Name of the host. It can contain what
hostname
returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.type: keyword
-
host.network.egress.bytes
-
The number of bytes (gauge) sent out on all network interfaces by the host since the last metric collection.
type: long
-
host.network.egress.packets
-
The number of packets (gauge) sent out on all network interfaces by the host since the last metric collection.
type: long
-
host.network.ingress.bytes
-
The number of bytes received (gauge) on all network interfaces by the host since the last metric collection.
type: long
-
host.network.ingress.packets
-
The number of packets (gauge) received on all network interfaces by the host since the last metric collection.
type: long
-
host.os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
host.os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
host.os.full.text
-
type: match_only_text
-
host.os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
host.os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
host.os.name.text
-
type: match_only_text
-
host.os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
host.os.type
-
Use the
os.type
field to categorize the operating system into one of the broad commercial families. One of these following values should be used (lowercase): linux, macos, unix, windows. If the OS you’re dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.type: keyword
example: macos
-
host.os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
-
host.type
-
Type of host. For Cloud providers this can be the machine type like
t2.medium
. If vm, this could be the container, for example, or other information meaningful in your environment.type: keyword
-
host.uptime
-
Seconds the host has been up.
type: long
example: 1325
Fields related to HTTP activity. Use the url
field set to store the url of the request.
-
http.request.body.bytes
-
Size in bytes of the request body.
type: long
example: 887
format: bytes
-
http.request.body.content
-
The full HTTP request body.
type: wildcard
example: Hello world
-
http.request.body.content.text
-
type: match_only_text
-
http.request.bytes
-
Total size in bytes of the request (body and headers).
type: long
example: 1437
format: bytes
-
http.request.id
-
A unique identifier for each HTTP request to correlate logs between clients and servers in transactions. The id may be contained in a non-standard HTTP header, such as
X-Request-ID
orX-Correlation-ID
.type: keyword
example: 123e4567-e89b-12d3-a456-426614174000
-
http.request.method
-
HTTP request method. The value should retain its casing from the original event. For example,
GET
,get
, andGeT
are all considered valid values for this field.type: keyword
example: POST
-
http.request.mime_type
-
Mime type of the body of the request. This value must only be populated based on the content of the request body, not on the
Content-Type
header. Comparing the mime type of a request with the request’s Content-Type header can be helpful in detecting threats or misconfigured clients.type: keyword
example: image/gif
-
http.request.referrer
-
Referrer for this HTTP request.
type: keyword
example: https://blog.example.com/
-
http.response.body.bytes
-
Size in bytes of the response body.
type: long
example: 887
format: bytes
-
http.response.body.content
-
The full HTTP response body.
type: wildcard
example: Hello world
-
http.response.body.content.text
-
type: match_only_text
-
http.response.bytes
-
Total size in bytes of the response (body and headers).
type: long
example: 1437
format: bytes
-
http.response.mime_type
-
Mime type of the body of the response. This value must only be populated based on the content of the response body, not on the
Content-Type
header. Comparing the mime type of a response with the response’s Content-Type header can be helpful in detecting misconfigured servers.type: keyword
example: image/gif
-
http.response.status_code
-
HTTP response status code.
type: long
example: 404
format: string
-
http.version
-
HTTP version.
type: keyword
example: 1.1
The interface fields are used to record ingress and egress interface information when reported by an observer (e.g. firewall, router, load balancer) in the context of the observer handling a network connection. In the case of a single observer interface (e.g. network sensor on a span port) only the observer.ingress information should be populated.
-
interface.alias
-
Interface alias as reported by the system, typically used in firewall implementations for e.g. inside, outside, or dmz logical interface naming.
type: keyword
example: outside
-
interface.id
-
Interface ID as reported by an observer (typically SNMP interface ID).
type: keyword
example: 10
-
interface.name
-
Interface name as reported by the system.
type: keyword
example: eth0
Details about the event’s logging mechanism or logging transport.
The log.* fields are typically populated with details about the logging mechanism used to create and/or transport the event. For example, syslog details belong under log.syslog.*
.
The details specific to your event source are typically not logged under log.*
, but rather in event.*
or in other ECS fields.
-
log.file.path
-
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn’t read from a log file, do not populate this field.
type: keyword
example: /var/log/fun-times.log
-
log.level
-
Original log level of the log event. If the source of the event provides a log level or textual severity, this is the one that goes in
log.level
. If your source doesn’t specify one, you may put your event transport’s severity here (e.g. Syslog severity). Some examples arewarn
,err
,i
,informational
.type: keyword
example: error
-
log.logger
-
The name of the logger inside an application. This is usually the name of the class which initialized the logger, or can be a custom name.
type: keyword
example: org.elasticsearch.bootstrap.Bootstrap
-
log.origin.file.line
-
The line number of the file containing the source code which originated the log event.
type: long
example: 42
-
log.origin.file.name
-
The name of the file containing the source code which originated the log event. Note that this field is not meant to capture the log file. The correct field to capture the log file is
log.file.path
.type: keyword
example: Bootstrap.java
-
log.origin.function
-
The name of the function or method which originated the log event.
type: keyword
example: init
-
log.syslog
-
The Syslog metadata of the event, if the event was transmitted via Syslog. Please see RFCs 5424 or 3164.
type: object
-
log.syslog.facility.code
-
The Syslog numeric facility of the log event, if available. According to RFCs 5424 and 3164, this value should be an integer between 0 and 23.
type: long
example: 23
format: string
-
log.syslog.facility.name
-
The Syslog text-based facility of the log event, if available.
type: keyword
example: local7
-
log.syslog.priority
-
Syslog numeric priority of the event, if available. According to RFCs 5424 and 3164, the priority is 8 * facility + severity. This number is therefore expected to contain a value between 0 and 191.
type: long
example: 135
format: string
-
log.syslog.severity.code
-
The Syslog numeric severity of the log event, if available. If the event source publishing via Syslog provides a different numeric severity value (e.g. firewall, IDS), your source’s numeric severity should go to
event.severity
. If the event source does not specify a distinct severity, you can optionally copy the Syslog severity toevent.severity
.type: long
example: 3
-
log.syslog.severity.name
-
The Syslog numeric severity of the log event, if available. If the event source publishing via Syslog provides a different severity value (e.g. firewall, IDS), your source’s text severity should go to
log.level
. If the event source does not specify a distinct severity, you can optionally copy the Syslog severity tolog.level
.type: keyword
example: Error
The network is defined as the communication path over which a host or network event happens. The network.* fields should be populated with details about the network activity associated with an event.
-
network.application
-
When a specific application or service is identified from network connection details (source/dest IPs, ports, certificates, or wire format), this field captures the application’s or service’s name. For example, the original event identifies the network connection being from a specific web service in a
https
network connection, likefacebook
ortwitter
. The field value must be normalized to lowercase for querying.type: keyword
example: aim
-
network.bytes
-
Total bytes transferred in both directions. If
source.bytes
anddestination.bytes
are known,network.bytes
is their sum.type: long
example: 368
format: bytes
-
network.community_id
-
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
type: keyword
example: 1:hO+sN4H+MG5MY/8hIrXPqc4ZQz0=
-
network.direction
-
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown
When mapping events from a host-based monitoring context, populate this field from the host’s point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
type: keyword
example: inbound
-
network.forwarded_ip
-
Host IP address when the source IP address is the proxy.
type: ip
example: 192.1.1.2
-
network.iana_number
-
IANA Protocol Number (https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml). Standardized list of protocols. This aligns well with NetFlow and sFlow related logs which use the IANA Protocol Number.
type: keyword
example: 6
-
network.inner
-
Network.inner fields are added in addition to network.vlan fields to describe the innermost VLAN when q-in-q VLAN tagging is present. Allowed fields include vlan.id and vlan.name. Inner vlan fields are typically used when sending traffic with multiple 802.1q encapsulations to a network sensor (e.g. Zeek, Wireshark.)
type: object
-
network.inner.vlan.id
-
VLAN ID as reported by the observer.
type: keyword
example: 10
-
network.inner.vlan.name
-
Optional VLAN name as reported by the observer.
type: keyword
example: outside
-
network.name
-
Name given by operators to sections of their network.
type: keyword
example: Guest Wifi
-
network.packets
-
Total packets transferred in both directions. If
source.packets
anddestination.packets
are known,network.packets
is their sum.type: long
example: 24
-
network.protocol
-
In the OSI Model this would be the Application Layer protocol. For example,
http
,dns
, orssh
. The field value must be normalized to lowercase for querying.type: keyword
example: http
-
network.transport
-
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
type: keyword
example: tcp
-
network.type
-
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
type: keyword
example: ipv4
-
network.vlan.id
-
VLAN ID as reported by the observer.
type: keyword
example: 10
-
network.vlan.name
-
Optional VLAN name as reported by the observer.
type: keyword
example: outside
An observer is defined as a special network, security, or application device used to detect, observe, or create network, security, or application-related events and metrics. This could be a custom hardware appliance or a server that has been configured to run special network, security, or application software. Examples include firewalls, web proxies, intrusion detection/prevention systems, network monitoring sensors, web application firewalls, data loss prevention systems, and APM servers. The observer.* fields shall be populated with details of the system, if any, that detects, observes and/or creates a network, security, or application event or metric. Message queues and ETL components used in processing events or metrics are not considered observers in ECS.
-
observer.egress
-
Observer.egress holds information like interface number and name, vlan, and zone information to classify egress traffic. Single armed monitoring such as a network sensor on a span port should only use observer.ingress to categorize traffic.
type: object
-
observer.egress.interface.alias
-
Interface alias as reported by the system, typically used in firewall implementations for e.g. inside, outside, or dmz logical interface naming.
type: keyword
example: outside
-
observer.egress.interface.id
-
Interface ID as reported by an observer (typically SNMP interface ID).
type: keyword
example: 10
-
observer.egress.interface.name
-
Interface name as reported by the system.
type: keyword
example: eth0
-
observer.egress.vlan.id
-
VLAN ID as reported by the observer.
type: keyword
example: 10
-
observer.egress.vlan.name
-
Optional VLAN name as reported by the observer.
type: keyword
example: outside
-
observer.egress.zone
-
Network zone of outbound traffic as reported by the observer to categorize the destination area of egress traffic, e.g. Internal, External, DMZ, HR, Legal, etc.
type: keyword
example: Public_Internet
-
observer.geo.city_name
-
City name.
type: keyword
example: Montreal
-
observer.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
observer.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
observer.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
observer.geo.country_name
-
Country name.
type: keyword
example: Canada
-
observer.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
observer.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
observer.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
observer.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
observer.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
observer.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
observer.hostname
-
Hostname of the observer.
type: keyword
-
observer.ingress
-
Observer.ingress holds information like interface number and name, vlan, and zone information to classify ingress traffic. Single armed monitoring such as a network sensor on a span port should only use observer.ingress to categorize traffic.
type: object
-
observer.ingress.interface.alias
-
Interface alias as reported by the system, typically used in firewall implementations for e.g. inside, outside, or dmz logical interface naming.
type: keyword
example: outside
-
observer.ingress.interface.id
-
Interface ID as reported by an observer (typically SNMP interface ID).
type: keyword
example: 10
-
observer.ingress.interface.name
-
Interface name as reported by the system.
type: keyword
example: eth0
-
observer.ingress.vlan.id
-
VLAN ID as reported by the observer.
type: keyword
example: 10
-
observer.ingress.vlan.name
-
Optional VLAN name as reported by the observer.
type: keyword
example: outside
-
observer.ingress.zone
-
Network zone of incoming traffic as reported by the observer to categorize the source area of ingress traffic. e.g. internal, External, DMZ, HR, Legal, etc.
type: keyword
example: DMZ
-
observer.ip
-
IP addresses of the observer.
type: ip
-
observer.mac
-
MAC addresses of the observer. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: ["00-00-5E-00-53-23", "00-00-5E-00-53-24"]
-
observer.name
-
Custom name of the observer. This is a name that can be given to an observer. This can be helpful for example if multiple firewalls of the same model are used in an organization. If no custom name is needed, the field can be left empty.
type: keyword
example: 1_proxySG
-
observer.os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
observer.os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
observer.os.full.text
-
type: match_only_text
-
observer.os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
observer.os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
observer.os.name.text
-
type: match_only_text
-
observer.os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
observer.os.type
-
Use the
os.type
field to categorize the operating system into one of the broad commercial families. One of these following values should be used (lowercase): linux, macos, unix, windows. If the OS you’re dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.type: keyword
example: macos
-
observer.os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
-
observer.product
-
The product name of the observer.
type: keyword
example: s200
-
observer.serial_number
-
Observer serial number.
type: keyword
-
observer.type
-
The type of the observer the data is coming from. There is no predefined list of observer types. Some examples are
forwarder
,firewall
,ids
,ips
,proxy
,poller
,sensor
,APM server
.type: keyword
example: firewall
-
observer.vendor
-
Vendor name of the observer.
type: keyword
example: Symantec
-
observer.version
-
Observer version.
type: keyword
Fields that describe the resources which container orchestrators manage or act upon.
-
orchestrator.api_version
-
API version being used to carry out the action
type: keyword
example: v1beta1
-
orchestrator.cluster.name
-
Name of the cluster.
type: keyword
-
orchestrator.cluster.url
-
URL of the API used to manage the cluster.
type: keyword
-
orchestrator.cluster.version
-
The version of the cluster.
type: keyword
-
orchestrator.namespace
-
Namespace in which the action is taking place.
type: keyword
example: kube-system
-
orchestrator.organization
-
Organization affected by the event (for multi-tenant orchestrator setups).
type: keyword
example: elastic
-
orchestrator.resource.name
-
Name of the resource being acted upon.
type: keyword
example: test-pod-cdcws
-
orchestrator.resource.type
-
Type of resource being acted upon.
type: keyword
example: service
-
orchestrator.type
-
Orchestrator cluster type (e.g. kubernetes, nomad or cloudfoundry).
type: keyword
example: kubernetes
The organization fields enrich data with information about the company or entity the data is associated with. These fields help you arrange or filter data stored in an index by one or multiple organizations.
-
organization.id
-
Unique identifier for the organization.
type: keyword
-
organization.name
-
Organization name.
type: keyword
-
organization.name.text
-
type: match_only_text
The OS fields contain information about the operating system.
-
os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
os.full.text
-
type: match_only_text
-
os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
os.name.text
-
type: match_only_text
-
os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
os.type
-
Use the
os.type
field to categorize the operating system into one of the broad commercial families. One of these following values should be used (lowercase): linux, macos, unix, windows. If the OS you’re dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.type: keyword
example: macos
-
os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
These fields contain information about an installed software package. It contains general information about a package, such as name, version or size. It also contains installation details, such as time or location.
-
package.architecture
-
Package architecture.
type: keyword
example: x86_64
-
package.build_version
-
Additional information about the build version of the installed package. For example use the commit SHA of a non-released package.
type: keyword
example: 36f4f7e89dd61b0988b12ee000b98966867710cd
-
package.checksum
-
Checksum of the installed package for verification.
type: keyword
example: 68b329da9893e34099c7d8ad5cb9c940
-
package.description
-
Description of the package.
type: keyword
example: Open source programming language to build simple/reliable/efficient software.
-
package.install_scope
-
Indicating how the package was installed, e.g. user-local, global.
type: keyword
example: global
-
package.installed
-
Time when package was installed.
type: date
-
package.license
-
License under which the package was released. Use a short name, e.g. the license identifier from SPDX License List where possible (https://spdx.org/licenses/).
type: keyword
example: Apache License 2.0
-
package.name
-
Package name
type: keyword
example: go
-
package.path
-
Path where the package is installed.
type: keyword
example: /usr/local/Cellar/go/1.12.9/
-
package.reference
-
Home page or reference URL of the software in this package, if available.
type: keyword
example: https://golang.org
-
package.size
-
Package size in bytes.
type: long
example: 62231
format: string
-
package.type
-
Type of package. This should contain the package file type, rather than the package manager name. Examples: rpm, dpkg, brew, npm, gem, nupkg, jar.
type: keyword
example: rpm
-
package.version
-
Package version
type: keyword
example: 1.12.9
These fields contain Windows Portable Executable (PE) metadata.
-
pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
These fields contain information about a process.
These fields can help you correlate metrics information with a process id/name from a log message. The process.pid
often stays in the metric itself and is copied to the global field for correlation.
-
process.args
-
Array of process arguments, starting with the absolute path to the executable. May be filtered to protect sensitive information.
type: keyword
example: ["/usr/bin/ssh", "-l", "user", "10.0.0.16"]
-
process.args_count
-
Length of the process.args array. This field can be useful for querying or performing bucket analysis on how many arguments were provided to start a process. More arguments may be an indication of suspicious activity.
type: long
example: 4
-
process.code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
process.code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
process.code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
process.code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
process.code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
process.code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
process.code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
process.code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
process.code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
-
process.command_line
-
Full command line that started the process, including the absolute path to the executable, and all arguments. Some arguments may be filtered to protect sensitive information.
type: wildcard
example: /usr/bin/ssh -l user 10.0.0.16
-
process.command_line.text
-
type: match_only_text
-
process.elf.architecture
-
Machine architecture of the ELF file.
type: keyword
example: x86-64
-
process.elf.byte_order
-
Byte sequence of ELF file.
type: keyword
example: Little Endian
-
process.elf.cpu_type
-
CPU type of the ELF file.
type: keyword
example: Intel
-
process.elf.creation_date
-
Extracted when possible from the file’s metadata. Indicates when it was built or compiled. It can also be faked by malware creators.
type: date
-
process.elf.exports
-
List of exported element names and types.
type: flattened
-
process.elf.header.abi_version
-
Version of the ELF Application Binary Interface (ABI).
type: keyword
-
process.elf.header.class
-
Header class of the ELF file.
type: keyword
-
process.elf.header.data
-
Data table of the ELF header.
type: keyword
-
process.elf.header.entrypoint
-
Header entrypoint of the ELF file.
type: long
format: string
-
process.elf.header.object_version
-
"0x1" for original ELF files.
type: keyword
-
process.elf.header.os_abi
-
Application Binary Interface (ABI) of the Linux OS.
type: keyword
-
process.elf.header.type
-
Header type of the ELF file.
type: keyword
-
process.elf.header.version
-
Version of the ELF header.
type: keyword
-
process.elf.imports
-
List of imported element names and types.
type: flattened
-
process.elf.sections
-
An array containing an object for each section of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.sections.*
.type: nested
-
process.elf.sections.chi2
-
Chi-square probability distribution of the section.
type: long
format: number
-
process.elf.sections.entropy
-
Shannon entropy calculation from the section.
type: long
format: number
-
process.elf.sections.flags
-
ELF Section List flags.
type: keyword
-
process.elf.sections.name
-
ELF Section List name.
type: keyword
-
process.elf.sections.physical_offset
-
ELF Section List offset.
type: keyword
-
process.elf.sections.physical_size
-
ELF Section List physical size.
type: long
format: bytes
-
process.elf.sections.type
-
ELF Section List type.
type: keyword
-
process.elf.sections.virtual_address
-
ELF Section List virtual address.
type: long
format: string
-
process.elf.sections.virtual_size
-
ELF Section List virtual size.
type: long
format: string
-
process.elf.segments
-
An array containing an object for each segment of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.segments.*
.type: nested
-
process.elf.segments.sections
-
ELF object segment sections.
type: keyword
-
process.elf.segments.type
-
ELF object segment type.
type: keyword
-
process.elf.shared_libraries
-
List of shared libraries used by this ELF object.
type: keyword
-
process.elf.telfhash
-
telfhash symbol hash for ELF file.
type: keyword
-
process.end
-
The time the process ended.
type: date
example: 2016-05-23T08:05:34.853Z
-
process.entity_id
-
Unique identifier for the process. The implementation of this is specified by the data source, but some examples of what could be used here are a process-generated UUID, Sysmon Process GUIDs, or a hash of some uniquely identifying components of a process. Constructing a globally unique identifier is a common practice to mitigate PID reuse as well as to identify a specific process over time, across multiple monitored hosts.
type: keyword
example: c2c455d9f99375d
-
process.executable
-
Absolute path to the process executable.
type: keyword
example: /usr/bin/ssh
-
process.executable.text
-
type: match_only_text
-
process.exit_code
-
The exit code of the process, if this is a termination event. The field should be absent if there is no exit code for the event (e.g. process start).
type: long
example: 137
-
process.hash.md5
-
MD5 hash.
type: keyword
-
process.hash.sha1
-
SHA1 hash.
type: keyword
-
process.hash.sha256
-
SHA256 hash.
type: keyword
-
process.hash.sha512
-
SHA512 hash.
type: keyword
-
process.hash.ssdeep
-
SSDEEP hash.
type: keyword
-
process.name
-
Process name. Sometimes called program name or similar.
type: keyword
example: ssh
-
process.name.text
-
type: match_only_text
-
process.parent.args
-
Array of process arguments, starting with the absolute path to the executable. May be filtered to protect sensitive information.
type: keyword
example: ["/usr/bin/ssh", "-l", "user", "10.0.0.16"]
-
process.parent.args_count
-
Length of the process.args array. This field can be useful for querying or performing bucket analysis on how many arguments were provided to start a process. More arguments may be an indication of suspicious activity.
type: long
example: 4
-
process.parent.code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
process.parent.code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
process.parent.code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
process.parent.code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
process.parent.code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
process.parent.code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
process.parent.code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
process.parent.code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
process.parent.code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
-
process.parent.command_line
-
Full command line that started the process, including the absolute path to the executable, and all arguments. Some arguments may be filtered to protect sensitive information.
type: wildcard
example: /usr/bin/ssh -l user 10.0.0.16
-
process.parent.command_line.text
-
type: match_only_text
-
process.parent.elf.architecture
-
Machine architecture of the ELF file.
type: keyword
example: x86-64
-
process.parent.elf.byte_order
-
Byte sequence of ELF file.
type: keyword
example: Little Endian
-
process.parent.elf.cpu_type
-
CPU type of the ELF file.
type: keyword
example: Intel
-
process.parent.elf.creation_date
-
Extracted when possible from the file’s metadata. Indicates when it was built or compiled. It can also be faked by malware creators.
type: date
-
process.parent.elf.exports
-
List of exported element names and types.
type: flattened
-
process.parent.elf.header.abi_version
-
Version of the ELF Application Binary Interface (ABI).
type: keyword
-
process.parent.elf.header.class
-
Header class of the ELF file.
type: keyword
-
process.parent.elf.header.data
-
Data table of the ELF header.
type: keyword
-
process.parent.elf.header.entrypoint
-
Header entrypoint of the ELF file.
type: long
format: string
-
process.parent.elf.header.object_version
-
"0x1" for original ELF files.
type: keyword
-
process.parent.elf.header.os_abi
-
Application Binary Interface (ABI) of the Linux OS.
type: keyword
-
process.parent.elf.header.type
-
Header type of the ELF file.
type: keyword
-
process.parent.elf.header.version
-
Version of the ELF header.
type: keyword
-
process.parent.elf.imports
-
List of imported element names and types.
type: flattened
-
process.parent.elf.sections
-
An array containing an object for each section of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.sections.*
.type: nested
-
process.parent.elf.sections.chi2
-
Chi-square probability distribution of the section.
type: long
format: number
-
process.parent.elf.sections.entropy
-
Shannon entropy calculation from the section.
type: long
format: number
-
process.parent.elf.sections.flags
-
ELF Section List flags.
type: keyword
-
process.parent.elf.sections.name
-
ELF Section List name.
type: keyword
-
process.parent.elf.sections.physical_offset
-
ELF Section List offset.
type: keyword
-
process.parent.elf.sections.physical_size
-
ELF Section List physical size.
type: long
format: bytes
-
process.parent.elf.sections.type
-
ELF Section List type.
type: keyword
-
process.parent.elf.sections.virtual_address
-
ELF Section List virtual address.
type: long
format: string
-
process.parent.elf.sections.virtual_size
-
ELF Section List virtual size.
type: long
format: string
-
process.parent.elf.segments
-
An array containing an object for each segment of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.segments.*
.type: nested
-
process.parent.elf.segments.sections
-
ELF object segment sections.
type: keyword
-
process.parent.elf.segments.type
-
ELF object segment type.
type: keyword
-
process.parent.elf.shared_libraries
-
List of shared libraries used by this ELF object.
type: keyword
-
process.parent.elf.telfhash
-
telfhash symbol hash for ELF file.
type: keyword
-
process.parent.end
-
The time the process ended.
type: date
example: 2016-05-23T08:05:34.853Z
-
process.parent.entity_id
-
Unique identifier for the process. The implementation of this is specified by the data source, but some examples of what could be used here are a process-generated UUID, Sysmon Process GUIDs, or a hash of some uniquely identifying components of a process. Constructing a globally unique identifier is a common practice to mitigate PID reuse as well as to identify a specific process over time, across multiple monitored hosts.
type: keyword
example: c2c455d9f99375d
-
process.parent.executable
-
Absolute path to the process executable.
type: keyword
example: /usr/bin/ssh
-
process.parent.executable.text
-
type: match_only_text
-
process.parent.exit_code
-
The exit code of the process, if this is a termination event. The field should be absent if there is no exit code for the event (e.g. process start).
type: long
example: 137
-
process.parent.hash.md5
-
MD5 hash.
type: keyword
-
process.parent.hash.sha1
-
SHA1 hash.
type: keyword
-
process.parent.hash.sha256
-
SHA256 hash.
type: keyword
-
process.parent.hash.sha512
-
SHA512 hash.
type: keyword
-
process.parent.hash.ssdeep
-
SSDEEP hash.
type: keyword
-
process.parent.name
-
Process name. Sometimes called program name or similar.
type: keyword
example: ssh
-
process.parent.name.text
-
type: match_only_text
-
process.parent.pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
process.parent.pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
process.parent.pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
process.parent.pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
process.parent.pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
process.parent.pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
process.parent.pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
-
process.parent.pgid
-
Identifier of the group of processes the process belongs to.
type: long
format: string
-
process.parent.pid
-
Process id.
type: long
example: 4242
format: string
-
process.parent.start
-
The time the process started.
type: date
example: 2016-05-23T08:05:34.853Z
-
process.parent.thread.id
-
Thread ID.
type: long
example: 4242
format: string
-
process.parent.thread.name
-
Thread name.
type: keyword
example: thread-0
-
process.parent.title
-
Process title. The proctitle, some times the same as process name. Can also be different: for example a browser setting its title to the web page currently opened.
type: keyword
-
process.parent.title.text
-
type: match_only_text
-
process.parent.uptime
-
Seconds the process has been up.
type: long
example: 1325
-
process.parent.working_directory
-
The working directory of the process.
type: keyword
example: /home/alice
-
process.parent.working_directory.text
-
type: match_only_text
-
process.pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
process.pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
process.pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
process.pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
process.pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
process.pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
process.pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
-
process.pgid
-
Identifier of the group of processes the process belongs to.
type: long
format: string
-
process.pid
-
Process id.
type: long
example: 4242
format: string
-
process.start
-
The time the process started.
type: date
example: 2016-05-23T08:05:34.853Z
-
process.thread.id
-
Thread ID.
type: long
example: 4242
format: string
-
process.thread.name
-
Thread name.
type: keyword
example: thread-0
-
process.title
-
Process title. The proctitle, some times the same as process name. Can also be different: for example a browser setting its title to the web page currently opened.
type: keyword
-
process.title.text
-
type: match_only_text
-
process.uptime
-
Seconds the process has been up.
type: long
example: 1325
-
process.working_directory
-
The working directory of the process.
type: keyword
example: /home/alice
-
process.working_directory.text
-
type: match_only_text
Fields related to Windows Registry operations.
-
registry.data.bytes
-
Original bytes written with base64 encoding. For Windows registry operations, such as SetValueEx and RegQueryValueEx, this corresponds to the data pointed by
lp_data
. This is optional but provides better recoverability and should be populated for REG_BINARY encoded values.type: keyword
example: ZQBuAC0AVQBTAAAAZQBuAAAAAAA=
-
registry.data.strings
-
Content when writing string types. Populated as an array when writing string data to the registry. For single string registry types (REG_SZ, REG_EXPAND_SZ), this should be an array with one string. For sequences of string with REG_MULTI_SZ, this array will be variable length. For numeric data, such as REG_DWORD and REG_QWORD, this should be populated with the decimal representation (e.g
"1"
).type: wildcard
example: ["C:\rta\red_ttp\bin\myapp.exe"]
-
registry.data.type
-
Standard registry type for encoding contents
type: keyword
example: REG_SZ
-
registry.hive
-
Abbreviated name for the hive.
type: keyword
example: HKLM
-
registry.key
-
Hive-relative path of keys.
type: keyword
example: SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe
-
registry.path
-
Full path, including hive, key and value
type: keyword
example: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe\Debugger
-
registry.value
-
Name of the value written.
type: keyword
example: Debugger
This field set is meant to facilitate pivoting around a piece of data.
Some pieces of information can be seen in many places in an ECS event. To facilitate searching for them, store an array of all seen values to their corresponding field in related.
.
A concrete example is IP addresses, which can be under host, observer, source, destination, client, server, and network.forwarded_ip. If you append all IPs to related.ip
, you can then search for a given IP trivially, no matter where it appeared, by querying related.ip:192.0.2.15
.
-
related.hash
-
All the hashes seen on your event. Populating this field, then using it to search for hashes can help in situations where you’re unsure what the hash algorithm is (and therefore which key name to search).
type: keyword
-
related.hosts
-
All hostnames or other host identifiers seen on your event. Example identifiers include FQDNs, domain names, workstation names, or aliases.
type: keyword
-
related.ip
-
All of the IPs seen on your event.
type: ip
-
related.user
-
All the user names or other user identifiers seen on the event.
type: keyword
Rule fields are used to capture the specifics of any observer or agent rules that generate alerts or other notable events. Examples of data sources that would populate the rule fields include: network admission control platforms, network or host IDS/IPS, network firewalls, web application firewalls, url filters, endpoint detection and response (EDR) systems, etc.
-
rule.author
-
Name, organization, or pseudonym of the author or authors who created the rule used to generate this event.
type: keyword
example: ["Star-Lord"]
-
rule.category
-
A categorization value keyword used by the entity using the rule for detection of this event.
type: keyword
example: Attempted Information Leak
-
rule.description
-
The description of the rule generating the event.
type: keyword
example: Block requests to public DNS over HTTPS / TLS protocols
-
rule.id
-
A rule ID that is unique within the scope of an agent, observer, or other entity using the rule for detection of this event.
type: keyword
example: 101
-
rule.license
-
Name of the license under which the rule used to generate this event is made available.
type: keyword
example: Apache 2.0
-
rule.name
-
The name of the rule or signature generating the event.
type: keyword
example: BLOCK_DNS_over_TLS
-
rule.reference
-
Reference URL to additional information about the rule used to generate this event. The URL can point to the vendor’s documentation about the rule. If that’s not available, it can also be a link to a more general page describing this type of alert.
type: keyword
-
rule.ruleset
-
Name of the ruleset, policy, group, or parent category in which the rule used to generate this event is a member.
type: keyword
example: Standard_Protocol_Filters
-
rule.uuid
-
A rule ID that is unique within the scope of a set or group of agents, observers, or other entities using the rule for detection of this event.
type: keyword
example: 1100110011
-
rule.version
-
The version / revision of the rule being used for analysis.
type: keyword
example: 1.1
A Server is defined as the responder in a network connection for events regarding sessions, connections, or bidirectional flow records. For TCP events, the server is the receiver of the initial SYN packet(s) of the TCP connection. For other protocols, the server is generally the responder in the network transaction. Some systems actually use the term "responder" to refer the server in TCP connections. The server fields describe details about the system acting as the server in the network event. Server fields are usually populated in conjunction with client fields. Server fields are generally not populated for packet-level events. Client / server representations can add semantic context to an exchange, which is helpful to visualize the data in certain situations. If your context falls in that category, you should still ensure that source and destination are filled appropriately.
-
server.address
-
Some event server addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
server.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
server.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
server.as.organization.name.text
-
type: match_only_text
-
server.bytes
-
Bytes sent from the server to the client.
type: long
example: 184
format: bytes
-
server.domain
-
The domain name of the server system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
type: keyword
example: foo.example.com
-
server.geo.city_name
-
City name.
type: keyword
example: Montreal
-
server.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
server.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
server.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
server.geo.country_name
-
Country name.
type: keyword
example: Canada
-
server.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
server.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
server.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
server.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
server.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
server.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
server.ip
-
IP address of the server (IPv4 or IPv6).
type: ip
-
server.mac
-
MAC address of the server. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
-
server.nat.ip
-
Translated ip of destination based NAT sessions (e.g. internet to private DMZ) Typically used with load balancers, firewalls, or routers.
type: ip
-
server.nat.port
-
Translated port of destination based NAT sessions (e.g. internet to private DMZ) Typically used with load balancers, firewalls, or routers.
type: long
format: string
-
server.packets
-
Packets sent from the server to the client.
type: long
example: 12
-
server.port
-
Port of the server.
type: long
format: string
-
server.registered_domain
-
The highest registered server domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
server.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
server.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
server.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
server.user.email
-
User email address.
type: keyword
-
server.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
server.user.full_name.text
-
type: match_only_text
-
server.user.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
server.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
server.user.group.name
-
Name of the group.
type: keyword
-
server.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
server.user.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
server.user.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
server.user.name.text
-
type: match_only_text
-
server.user.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
The service fields describe the service for or from which the data was collected. These fields help you find and correlate logs for a specific service and version.
-
service.address
-
Address where data about this service was collected from. This should be a URI, network address (ipv4:port or [ipv6]:port) or a resource path (sockets).
type: keyword
example: 172.26.0.2:5432
-
service.environment
-
Identifies the environment where the service is running. If the same service runs in different environments (production, staging, QA, development, etc.), the environment can identify other instances of the same service. Can also group services and applications from the same environment.
type: keyword
example: production
-
service.ephemeral_id
-
Ephemeral identifier of this service (if one exists). This id normally changes across restarts, but
service.id
does not.type: keyword
example: 8a4f500f
-
service.id
-
Unique identifier of the running service. If the service is comprised of many nodes, the
service.id
should be the same for all nodes. This id should uniquely identify the service. This makes it possible to correlate logs and metrics for one specific service, no matter which particular node emitted the event. Note that if you need to see the events from one specific host of the service, you should filter on thathost.name
orhost.id
instead.type: keyword
example: d37e5ebfe0ae6c4972dbe9f0174a1637bb8247f6
-
service.name
-
Name of the service data is collected from. The name of the service is normally user given. This allows for distributed services that run on multiple hosts to correlate the related instances based on the name. In the case of Elasticsearch the
service.name
could contain the cluster name. For Beats theservice.name
is by default a copy of theservice.type
field if no name is specified.type: keyword
example: elasticsearch-metrics
-
service.node.name
-
Name of a service node. This allows for two nodes of the same service running on the same host to be differentiated. Therefore,
service.node.name
should typically be unique across nodes of a given service. In the case of Elasticsearch, theservice.node.name
could contain the unique node name within the Elasticsearch cluster. In cases where the service doesn’t have the concept of a node name, the host name or container name can be used to distinguish running instances that make up this service. If those do not provide uniqueness (e.g. multiple instances of the service running on the same host) - the node name can be manually set.type: keyword
example: instance-0000000016
-
service.origin.address
-
Address where data about this service was collected from. This should be a URI, network address (ipv4:port or [ipv6]:port) or a resource path (sockets).
type: keyword
example: 172.26.0.2:5432
-
service.origin.environment
-
Identifies the environment where the service is running. If the same service runs in different environments (production, staging, QA, development, etc.), the environment can identify other instances of the same service. Can also group services and applications from the same environment.
type: keyword
example: production
-
service.origin.ephemeral_id
-
Ephemeral identifier of this service (if one exists). This id normally changes across restarts, but
service.id
does not.type: keyword
example: 8a4f500f
-
service.origin.id
-
Unique identifier of the running service. If the service is comprised of many nodes, the
service.id
should be the same for all nodes. This id should uniquely identify the service. This makes it possible to correlate logs and metrics for one specific service, no matter which particular node emitted the event. Note that if you need to see the events from one specific host of the service, you should filter on thathost.name
orhost.id
instead.type: keyword
example: d37e5ebfe0ae6c4972dbe9f0174a1637bb8247f6
-
service.origin.name
-
Name of the service data is collected from. The name of the service is normally user given. This allows for distributed services that run on multiple hosts to correlate the related instances based on the name. In the case of Elasticsearch the
service.name
could contain the cluster name. For Beats theservice.name
is by default a copy of theservice.type
field if no name is specified.type: keyword
example: elasticsearch-metrics
-
service.origin.node.name
-
Name of a service node. This allows for two nodes of the same service running on the same host to be differentiated. Therefore,
service.node.name
should typically be unique across nodes of a given service. In the case of Elasticsearch, theservice.node.name
could contain the unique node name within the Elasticsearch cluster. In cases where the service doesn’t have the concept of a node name, the host name or container name can be used to distinguish running instances that make up this service. If those do not provide uniqueness (e.g. multiple instances of the service running on the same host) - the node name can be manually set.type: keyword
example: instance-0000000016
-
service.origin.state
-
Current state of the service.
type: keyword
-
service.origin.type
-
The type of the service data is collected from. The type can be used to group and correlate logs and metrics from one service type. Example: If logs or metrics are collected from Elasticsearch,
service.type
would beelasticsearch
.type: keyword
example: elasticsearch
-
service.origin.version
-
Version of the service the data was collected from. This allows to look at a data set only for a specific version of a service.
type: keyword
example: 3.2.4
-
service.state
-
Current state of the service.
type: keyword
-
service.target.address
-
Address where data about this service was collected from. This should be a URI, network address (ipv4:port or [ipv6]:port) or a resource path (sockets).
type: keyword
example: 172.26.0.2:5432
-
service.target.environment
-
Identifies the environment where the service is running. If the same service runs in different environments (production, staging, QA, development, etc.), the environment can identify other instances of the same service. Can also group services and applications from the same environment.
type: keyword
example: production
-
service.target.ephemeral_id
-
Ephemeral identifier of this service (if one exists). This id normally changes across restarts, but
service.id
does not.type: keyword
example: 8a4f500f
-
service.target.id
-
Unique identifier of the running service. If the service is comprised of many nodes, the
service.id
should be the same for all nodes. This id should uniquely identify the service. This makes it possible to correlate logs and metrics for one specific service, no matter which particular node emitted the event. Note that if you need to see the events from one specific host of the service, you should filter on thathost.name
orhost.id
instead.type: keyword
example: d37e5ebfe0ae6c4972dbe9f0174a1637bb8247f6
-
service.target.name
-
Name of the service data is collected from. The name of the service is normally user given. This allows for distributed services that run on multiple hosts to correlate the related instances based on the name. In the case of Elasticsearch the
service.name
could contain the cluster name. For Beats theservice.name
is by default a copy of theservice.type
field if no name is specified.type: keyword
example: elasticsearch-metrics
-
service.target.node.name
-
Name of a service node. This allows for two nodes of the same service running on the same host to be differentiated. Therefore,
service.node.name
should typically be unique across nodes of a given service. In the case of Elasticsearch, theservice.node.name
could contain the unique node name within the Elasticsearch cluster. In cases where the service doesn’t have the concept of a node name, the host name or container name can be used to distinguish running instances that make up this service. If those do not provide uniqueness (e.g. multiple instances of the service running on the same host) - the node name can be manually set.type: keyword
example: instance-0000000016
-
service.target.state
-
Current state of the service.
type: keyword
-
service.target.type
-
The type of the service data is collected from. The type can be used to group and correlate logs and metrics from one service type. Example: If logs or metrics are collected from Elasticsearch,
service.type
would beelasticsearch
.type: keyword
example: elasticsearch
-
service.target.version
-
Version of the service the data was collected from. This allows to look at a data set only for a specific version of a service.
type: keyword
example: 3.2.4
-
service.type
-
The type of the service data is collected from. The type can be used to group and correlate logs and metrics from one service type. Example: If logs or metrics are collected from Elasticsearch,
service.type
would beelasticsearch
.type: keyword
example: elasticsearch
-
service.version
-
Version of the service the data was collected from. This allows to look at a data set only for a specific version of a service.
type: keyword
example: 3.2.4
Source fields capture details about the sender of a network exchange/packet. These fields are populated from a network event, packet, or other event containing details of a network transaction. Source fields are usually populated in conjunction with destination fields. The source and destination fields are considered the baseline and should always be filled if an event contains source and destination details from a network transaction. If the event also contains identification of the client and server roles, then the client and server fields should also be populated.
-
source.address
-
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
source.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
source.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
source.as.organization.name.text
-
type: match_only_text
-
source.bytes
-
Bytes sent from the source to the destination.
type: long
example: 184
format: bytes
-
source.domain
-
The domain name of the source system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
type: keyword
example: foo.example.com
-
source.geo.city_name
-
City name.
type: keyword
example: Montreal
-
source.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
source.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
source.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
source.geo.country_name
-
Country name.
type: keyword
example: Canada
-
source.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
source.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
source.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
source.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
source.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
source.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
source.ip
-
IP address of the source (IPv4 or IPv6).
type: ip
-
source.mac
-
MAC address of the source. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
-
source.nat.ip
-
Translated ip of source based NAT sessions (e.g. internal client to internet) Typically connections traversing load balancers, firewalls, or routers.
type: ip
-
source.nat.port
-
Translated port of source based NAT sessions. (e.g. internal client to internet) Typically used with load balancers, firewalls, or routers.
type: long
format: string
-
source.packets
-
Packets sent from the source to the destination.
type: long
example: 12
-
source.port
-
Port of the source.
type: long
format: string
-
source.registered_domain
-
The highest registered source domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
source.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
source.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
source.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
source.user.email
-
User email address.
type: keyword
-
source.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
source.user.full_name.text
-
type: match_only_text
-
source.user.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
source.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
source.user.group.name
-
Name of the group.
type: keyword
-
source.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
source.user.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
source.user.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
source.user.name.text
-
type: match_only_text
-
source.user.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
Fields to classify events and alerts according to a threat taxonomy such as the MITRE ATT&CK® framework. These fields are for users to classify alerts from all of their sources (e.g. IDS, NGFW, etc.) within a common taxonomy. The threat.tactic.* fields are meant to capture the high level category of the threat (e.g. "impact"). The threat.technique.* fields are meant to capture which kind of approach is used by this detected threat, to accomplish the goal (e.g. "endpoint denial of service").
-
threat.enrichments
-
A list of associated indicators objects enriching the event, and the context of that association/enrichment.
type: nested
-
threat.enrichments.indicator
-
Object containing associated indicators enriching the event.
type: object
-
threat.enrichments.indicator.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
threat.enrichments.indicator.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
threat.enrichments.indicator.as.organization.name.text
-
type: match_only_text
-
threat.enrichments.indicator.confidence
-
Identifies the vendor-neutral confidence rating using the None/Low/Medium/High scale defined in Appendix A of the STIX 2.1 framework. Vendor-specific confidence scales may be added as custom fields. Expected values are: * Not Specified * None * Low * Medium * High
type: keyword
example: Medium
-
threat.enrichments.indicator.description
-
Describes the type of action conducted by the threat.
type: keyword
example: IP x.x.x.x was observed delivering the Angler EK.
-
threat.enrichments.indicator.email.address
-
Identifies a threat indicator as an email address (irrespective of direction).
type: keyword
example: phish@example.com
-
threat.enrichments.indicator.file.accessed
-
Last time the file was accessed. Note that not all filesystems keep track of access time.
type: date
-
threat.enrichments.indicator.file.attributes
-
Array of file attributes. Attributes names will vary by platform. Here’s a non-exhaustive list of values that are expected in this field: archive, compressed, directory, encrypted, execute, hidden, read, readonly, system, write.
type: keyword
example: ["readonly", "system"]
-
threat.enrichments.indicator.file.code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
threat.enrichments.indicator.file.code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
threat.enrichments.indicator.file.code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
threat.enrichments.indicator.file.code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
threat.enrichments.indicator.file.code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
threat.enrichments.indicator.file.code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
threat.enrichments.indicator.file.code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
threat.enrichments.indicator.file.code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
threat.enrichments.indicator.file.code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
-
threat.enrichments.indicator.file.created
-
File creation time. Note that not all filesystems store the creation time.
type: date
-
threat.enrichments.indicator.file.ctime
-
Last time the file attributes or metadata changed. Note that changes to the file content will update
mtime
. This impliesctime
will be adjusted at the same time, sincemtime
is an attribute of the file.type: date
-
threat.enrichments.indicator.file.device
-
Device that is the source of the file.
type: keyword
example: sda
-
threat.enrichments.indicator.file.directory
-
Directory where the file is located. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice
-
threat.enrichments.indicator.file.drive_letter
-
Drive letter where the file is located. This field is only relevant on Windows. The value should be uppercase, and not include the colon.
type: keyword
example: C
-
threat.enrichments.indicator.file.elf.architecture
-
Machine architecture of the ELF file.
type: keyword
example: x86-64
-
threat.enrichments.indicator.file.elf.byte_order
-
Byte sequence of ELF file.
type: keyword
example: Little Endian
-
threat.enrichments.indicator.file.elf.cpu_type
-
CPU type of the ELF file.
type: keyword
example: Intel
-
threat.enrichments.indicator.file.elf.creation_date
-
Extracted when possible from the file’s metadata. Indicates when it was built or compiled. It can also be faked by malware creators.
type: date
-
threat.enrichments.indicator.file.elf.exports
-
List of exported element names and types.
type: flattened
-
threat.enrichments.indicator.file.elf.header.abi_version
-
Version of the ELF Application Binary Interface (ABI).
type: keyword
-
threat.enrichments.indicator.file.elf.header.class
-
Header class of the ELF file.
type: keyword
-
threat.enrichments.indicator.file.elf.header.data
-
Data table of the ELF header.
type: keyword
-
threat.enrichments.indicator.file.elf.header.entrypoint
-
Header entrypoint of the ELF file.
type: long
format: string
-
threat.enrichments.indicator.file.elf.header.object_version
-
"0x1" for original ELF files.
type: keyword
-
threat.enrichments.indicator.file.elf.header.os_abi
-
Application Binary Interface (ABI) of the Linux OS.
type: keyword
-
threat.enrichments.indicator.file.elf.header.type
-
Header type of the ELF file.
type: keyword
-
threat.enrichments.indicator.file.elf.header.version
-
Version of the ELF header.
type: keyword
-
threat.enrichments.indicator.file.elf.imports
-
List of imported element names and types.
type: flattened
-
threat.enrichments.indicator.file.elf.sections
-
An array containing an object for each section of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.sections.*
.type: nested
-
threat.enrichments.indicator.file.elf.sections.chi2
-
Chi-square probability distribution of the section.
type: long
format: number
-
threat.enrichments.indicator.file.elf.sections.entropy
-
Shannon entropy calculation from the section.
type: long
format: number
-
threat.enrichments.indicator.file.elf.sections.flags
-
ELF Section List flags.
type: keyword
-
threat.enrichments.indicator.file.elf.sections.name
-
ELF Section List name.
type: keyword
-
threat.enrichments.indicator.file.elf.sections.physical_offset
-
ELF Section List offset.
type: keyword
-
threat.enrichments.indicator.file.elf.sections.physical_size
-
ELF Section List physical size.
type: long
format: bytes
-
threat.enrichments.indicator.file.elf.sections.type
-
ELF Section List type.
type: keyword
-
threat.enrichments.indicator.file.elf.sections.virtual_address
-
ELF Section List virtual address.
type: long
format: string
-
threat.enrichments.indicator.file.elf.sections.virtual_size
-
ELF Section List virtual size.
type: long
format: string
-
threat.enrichments.indicator.file.elf.segments
-
An array containing an object for each segment of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.segments.*
.type: nested
-
threat.enrichments.indicator.file.elf.segments.sections
-
ELF object segment sections.
type: keyword
-
threat.enrichments.indicator.file.elf.segments.type
-
ELF object segment type.
type: keyword
-
threat.enrichments.indicator.file.elf.shared_libraries
-
List of shared libraries used by this ELF object.
type: keyword
-
threat.enrichments.indicator.file.elf.telfhash
-
telfhash symbol hash for ELF file.
type: keyword
-
threat.enrichments.indicator.file.extension
-
File extension, excluding the leading dot. Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
-
threat.enrichments.indicator.file.fork_name
-
A fork is additional data associated with a filesystem object. On Linux, a resource fork is used to store additional data with a filesystem object. A file always has at least one fork for the data portion, and additional forks may exist. On NTFS, this is analogous to an Alternate Data Stream (ADS), and the default data stream for a file is just called $DATA. Zone.Identifier is commonly used by Windows to track contents downloaded from the Internet. An ADS is typically of the form:
C:\path\to\filename.extension:some_fork_name
, andsome_fork_name
is the value that should populatefork_name
.filename.extension
should populatefile.name
, andextension
should populatefile.extension
. The full path,file.path
, will include the fork name.type: keyword
example: Zone.Identifer
-
threat.enrichments.indicator.file.gid
-
Primary group ID (GID) of the file.
type: keyword
example: 1001
-
threat.enrichments.indicator.file.group
-
Primary group name of the file.
type: keyword
example: alice
-
threat.enrichments.indicator.file.hash.md5
-
MD5 hash.
type: keyword
-
threat.enrichments.indicator.file.hash.sha1
-
SHA1 hash.
type: keyword
-
threat.enrichments.indicator.file.hash.sha256
-
SHA256 hash.
type: keyword
-
threat.enrichments.indicator.file.hash.sha512
-
SHA512 hash.
type: keyword
-
threat.enrichments.indicator.file.hash.ssdeep
-
SSDEEP hash.
type: keyword
-
threat.enrichments.indicator.file.inode
-
Inode representing the file in the filesystem.
type: keyword
example: 256383
-
threat.enrichments.indicator.file.mime_type
-
MIME type should identify the format of the file or stream of bytes using IANA official types, where possible. When more than one type is applicable, the most specific type should be used.
type: keyword
-
threat.enrichments.indicator.file.mode
-
Mode of the file in octal representation.
type: keyword
example: 0640
-
threat.enrichments.indicator.file.mtime
-
Last time the file content was modified.
type: date
-
threat.enrichments.indicator.file.name
-
Name of the file including the extension, without the directory.
type: keyword
example: example.png
-
threat.enrichments.indicator.file.owner
-
File owner’s username.
type: keyword
example: alice
-
threat.enrichments.indicator.file.path
-
Full path to the file, including the file name. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice/example.png
-
threat.enrichments.indicator.file.path.text
-
type: match_only_text
-
threat.enrichments.indicator.file.pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
threat.enrichments.indicator.file.pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
threat.enrichments.indicator.file.pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
threat.enrichments.indicator.file.pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
threat.enrichments.indicator.file.pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
threat.enrichments.indicator.file.pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
threat.enrichments.indicator.file.pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
-
threat.enrichments.indicator.file.size
-
File size in bytes. Only relevant when
file.type
is "file".type: long
example: 16384
-
threat.enrichments.indicator.file.target_path
-
Target path for symlinks.
type: keyword
-
threat.enrichments.indicator.file.target_path.text
-
type: match_only_text
-
threat.enrichments.indicator.file.type
-
File type (file, dir, or symlink).
type: keyword
example: file
-
threat.enrichments.indicator.file.uid
-
The user ID (UID) or security identifier (SID) of the file owner.
type: keyword
example: 1001
-
threat.enrichments.indicator.file.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
threat.enrichments.indicator.file.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
threat.enrichments.indicator.file.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
threat.enrichments.indicator.file.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
threat.enrichments.indicator.file.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
threat.enrichments.indicator.file.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
threat.enrichments.indicator.file.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
threat.enrichments.indicator.file.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.enrichments.indicator.file.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
threat.enrichments.indicator.file.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
threat.enrichments.indicator.file.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
threat.enrichments.indicator.file.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
threat.enrichments.indicator.file.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
threat.enrichments.indicator.file.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
threat.enrichments.indicator.file.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
threat.enrichments.indicator.file.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
threat.enrichments.indicator.file.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
threat.enrichments.indicator.file.x509.subject.country
-
List of country © code
type: keyword
example: US
-
threat.enrichments.indicator.file.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
threat.enrichments.indicator.file.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
threat.enrichments.indicator.file.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
threat.enrichments.indicator.file.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
threat.enrichments.indicator.file.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.enrichments.indicator.file.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
-
threat.enrichments.indicator.first_seen
-
The date and time when intelligence source first reported sighting this indicator.
type: date
example: 2020-11-05T17:25:47.000Z
-
threat.enrichments.indicator.geo.city_name
-
City name.
type: keyword
example: Montreal
-
threat.enrichments.indicator.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
threat.enrichments.indicator.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
threat.enrichments.indicator.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
threat.enrichments.indicator.geo.country_name
-
Country name.
type: keyword
example: Canada
-
threat.enrichments.indicator.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
threat.enrichments.indicator.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
threat.enrichments.indicator.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
threat.enrichments.indicator.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
threat.enrichments.indicator.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
threat.enrichments.indicator.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
threat.enrichments.indicator.ip
-
Identifies a threat indicator as an IP address (irrespective of direction).
type: ip
example: 1.2.3.4
-
threat.enrichments.indicator.last_seen
-
The date and time when intelligence source last reported sighting this indicator.
type: date
example: 2020-11-05T17:25:47.000Z
-
threat.enrichments.indicator.marking.tlp
-
Traffic Light Protocol sharing markings. Recommended values are: * WHITE * GREEN * AMBER * RED
type: keyword
example: White
-
threat.enrichments.indicator.modified_at
-
The date and time when intelligence source last modified information for this indicator.
type: date
example: 2020-11-05T17:25:47.000Z
-
threat.enrichments.indicator.port
-
Identifies a threat indicator as a port number (irrespective of direction).
type: long
example: 443
-
threat.enrichments.indicator.provider
-
The name of the indicator’s provider.
type: keyword
example: lrz_urlhaus
-
threat.enrichments.indicator.reference
-
Reference URL linking to additional information about this indicator.
type: keyword
-
threat.enrichments.indicator.registry.data.bytes
-
Original bytes written with base64 encoding. For Windows registry operations, such as SetValueEx and RegQueryValueEx, this corresponds to the data pointed by
lp_data
. This is optional but provides better recoverability and should be populated for REG_BINARY encoded values.type: keyword
example: ZQBuAC0AVQBTAAAAZQBuAAAAAAA=
-
threat.enrichments.indicator.registry.data.strings
-
Content when writing string types. Populated as an array when writing string data to the registry. For single string registry types (REG_SZ, REG_EXPAND_SZ), this should be an array with one string. For sequences of string with REG_MULTI_SZ, this array will be variable length. For numeric data, such as REG_DWORD and REG_QWORD, this should be populated with the decimal representation (e.g
"1"
).type: wildcard
example: ["C:\rta\red_ttp\bin\myapp.exe"]
-
threat.enrichments.indicator.registry.data.type
-
Standard registry type for encoding contents
type: keyword
example: REG_SZ
-
threat.enrichments.indicator.registry.hive
-
Abbreviated name for the hive.
type: keyword
example: HKLM
-
threat.enrichments.indicator.registry.key
-
Hive-relative path of keys.
type: keyword
example: SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe
-
threat.enrichments.indicator.registry.path
-
Full path, including hive, key and value
type: keyword
example: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe\Debugger
-
threat.enrichments.indicator.registry.value
-
Name of the value written.
type: keyword
example: Debugger
-
threat.enrichments.indicator.scanner_stats
-
Count of AV/EDR vendors that successfully detected malicious file or URL.
type: long
example: 4
-
threat.enrichments.indicator.sightings
-
Number of times this indicator was observed conducting threat activity.
type: long
example: 20
-
threat.enrichments.indicator.type
-
Type of indicator as represented by Cyber Observable in STIX 2.0. Recommended values: * autonomous-system * artifact * directory * domain-name * email-addr * file * ipv4-addr * ipv6-addr * mac-addr * mutex * port * process * software * url * user-account * windows-registry-key * x509-certificate
type: keyword
example: ipv4-addr
-
threat.enrichments.indicator.url.domain
-
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the
domain
field. If the URL contains a literal IPv6 address enclosed by[
and]
(IETF RFC 2732), the[
and]
characters should also be captured in thedomain
field.type: keyword
example: www.elastic.co
-
threat.enrichments.indicator.url.extension
-
The field contains the file extension from the original request url, excluding the leading dot. The file extension is only set if it exists, as not every url has a file extension. The leading period must not be included. For example, the value must be "png", not ".png". Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
-
threat.enrichments.indicator.url.fragment
-
Portion of the url after the
#
, such as "top". The#
is not part of the fragment.type: keyword
-
threat.enrichments.indicator.url.full
-
If full URLs are important to your use case, they should be stored in
url.full
, whether this field is reconstructed or present in the event source.type: wildcard
example: https://www.elastic.co:443/search?q=elasticsearch#top
-
threat.enrichments.indicator.url.full.text
-
type: match_only_text
-
threat.enrichments.indicator.url.original
-
Unmodified original url as seen in the event source. Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
type: wildcard
example: https://www.elastic.co:443/search?q=elasticsearch#top or /search?q=elasticsearch
-
threat.enrichments.indicator.url.original.text
-
type: match_only_text
-
threat.enrichments.indicator.url.password
-
Password of the request.
type: keyword
-
threat.enrichments.indicator.url.path
-
Path of the request, such as "/search".
type: wildcard
-
threat.enrichments.indicator.url.port
-
Port of the request, such as 443.
type: long
example: 443
format: string
-
threat.enrichments.indicator.url.query
-
The query field describes the query string of the request, such as "q=elasticsearch". The
?
is excluded from the query string. If a URL contains no?
, there is no query field. If there is a?
but no query, the query field exists with an empty string. Theexists
query can be used to differentiate between the two cases.type: keyword
-
threat.enrichments.indicator.url.registered_domain
-
The highest registered url domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
threat.enrichments.indicator.url.scheme
-
Scheme of the request, such as "https". Note: The
:
is not part of the scheme.type: keyword
example: https
-
threat.enrichments.indicator.url.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
threat.enrichments.indicator.url.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
threat.enrichments.indicator.url.username
-
Username of the request.
type: keyword
-
threat.enrichments.indicator.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
threat.enrichments.indicator.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
threat.enrichments.indicator.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
threat.enrichments.indicator.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
threat.enrichments.indicator.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
threat.enrichments.indicator.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
threat.enrichments.indicator.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
threat.enrichments.indicator.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.enrichments.indicator.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
threat.enrichments.indicator.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
threat.enrichments.indicator.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
threat.enrichments.indicator.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
threat.enrichments.indicator.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
threat.enrichments.indicator.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
threat.enrichments.indicator.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
threat.enrichments.indicator.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
threat.enrichments.indicator.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
threat.enrichments.indicator.x509.subject.country
-
List of country © code
type: keyword
example: US
-
threat.enrichments.indicator.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
threat.enrichments.indicator.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
threat.enrichments.indicator.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
threat.enrichments.indicator.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
threat.enrichments.indicator.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.enrichments.indicator.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
-
threat.enrichments.matched.atomic
-
Identifies the atomic indicator value that matched a local environment endpoint or network event.
type: keyword
example: bad-domain.com
-
threat.enrichments.matched.field
-
Identifies the field of the atomic indicator that matched a local environment endpoint or network event.
type: keyword
example: file.hash.sha256
-
threat.enrichments.matched.id
-
Identifies the _id of the indicator document enriching the event.
type: keyword
example: ff93aee5-86a1-4a61-b0e6-0cdc313d01b5
-
threat.enrichments.matched.index
-
Identifies the _index of the indicator document enriching the event.
type: keyword
example: filebeat-8.0.0-2021.05.23-000011
-
threat.enrichments.matched.type
-
Identifies the type of match that caused the event to be enriched with the given indicator
type: keyword
example: indicator_match_rule
-
threat.framework
-
Name of the threat framework used to further categorize and classify the tactic and technique of the reported threat. Framework classification can be provided by detecting systems, evaluated at ingest time, or retrospectively tagged to events.
type: keyword
example: MITRE ATT&CK
-
threat.group.alias
-
The alias(es) of the group for a set of related intrusion activity that are tracked by a common name in the security community. While not required, you can use a MITRE ATT&CK® group alias(es).
type: keyword
example: [ "Magecart Group 6" ]
-
threat.group.id
-
The id of the group for a set of related intrusion activity that are tracked by a common name in the security community. While not required, you can use a MITRE ATT&CK® group id.
type: keyword
example: G0037
-
threat.group.name
-
The name of the group for a set of related intrusion activity that are tracked by a common name in the security community. While not required, you can use a MITRE ATT&CK® group name.
type: keyword
example: FIN6
-
threat.group.reference
-
The reference URL of the group for a set of related intrusion activity that are tracked by a common name in the security community. While not required, you can use a MITRE ATT&CK® group reference URL.
type: keyword
-
threat.indicator.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
threat.indicator.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
threat.indicator.as.organization.name.text
-
type: match_only_text
-
threat.indicator.confidence
-
Identifies the vendor-neutral confidence rating using the None/Low/Medium/High scale defined in Appendix A of the STIX 2.1 framework. Vendor-specific confidence scales may be added as custom fields. Expected values are: * Not Specified * None * Low * Medium * High
type: keyword
example: Medium
-
threat.indicator.description
-
Describes the type of action conducted by the threat.
type: keyword
example: IP x.x.x.x was observed delivering the Angler EK.
-
threat.indicator.email.address
-
Identifies a threat indicator as an email address (irrespective of direction).
type: keyword
example: phish@example.com
-
threat.indicator.file.accessed
-
Last time the file was accessed. Note that not all filesystems keep track of access time.
type: date
-
threat.indicator.file.attributes
-
Array of file attributes. Attributes names will vary by platform. Here’s a non-exhaustive list of values that are expected in this field: archive, compressed, directory, encrypted, execute, hidden, read, readonly, system, write.
type: keyword
example: ["readonly", "system"]
-
threat.indicator.file.code_signature.digest_algorithm
-
The hashing algorithm used to sign the process. This value can distinguish signatures when a file is signed multiple times by the same signer but with a different digest algorithm.
type: keyword
example: sha256
-
threat.indicator.file.code_signature.exists
-
Boolean to capture if a signature is present.
type: boolean
example: true
-
threat.indicator.file.code_signature.signing_id
-
The identifier used to sign the process. This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
-
threat.indicator.file.code_signature.status
-
Additional information about the certificate status. This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
-
threat.indicator.file.code_signature.subject_name
-
Subject name of the code signer
type: keyword
example: Microsoft Corporation
-
threat.indicator.file.code_signature.team_id
-
The team identifier used to sign the process. This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
-
threat.indicator.file.code_signature.timestamp
-
Date and time when the code signature was generated and signed.
type: date
example: 2021-01-01T12:10:30Z
-
threat.indicator.file.code_signature.trusted
-
Stores the trust status of the certificate chain. Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
-
threat.indicator.file.code_signature.valid
-
Boolean to capture if the digital signature is verified against the binary content. Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
-
threat.indicator.file.created
-
File creation time. Note that not all filesystems store the creation time.
type: date
-
threat.indicator.file.ctime
-
Last time the file attributes or metadata changed. Note that changes to the file content will update
mtime
. This impliesctime
will be adjusted at the same time, sincemtime
is an attribute of the file.type: date
-
threat.indicator.file.device
-
Device that is the source of the file.
type: keyword
example: sda
-
threat.indicator.file.directory
-
Directory where the file is located. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice
-
threat.indicator.file.drive_letter
-
Drive letter where the file is located. This field is only relevant on Windows. The value should be uppercase, and not include the colon.
type: keyword
example: C
-
threat.indicator.file.elf.architecture
-
Machine architecture of the ELF file.
type: keyword
example: x86-64
-
threat.indicator.file.elf.byte_order
-
Byte sequence of ELF file.
type: keyword
example: Little Endian
-
threat.indicator.file.elf.cpu_type
-
CPU type of the ELF file.
type: keyword
example: Intel
-
threat.indicator.file.elf.creation_date
-
Extracted when possible from the file’s metadata. Indicates when it was built or compiled. It can also be faked by malware creators.
type: date
-
threat.indicator.file.elf.exports
-
List of exported element names and types.
type: flattened
-
threat.indicator.file.elf.header.abi_version
-
Version of the ELF Application Binary Interface (ABI).
type: keyword
-
threat.indicator.file.elf.header.class
-
Header class of the ELF file.
type: keyword
-
threat.indicator.file.elf.header.data
-
Data table of the ELF header.
type: keyword
-
threat.indicator.file.elf.header.entrypoint
-
Header entrypoint of the ELF file.
type: long
format: string
-
threat.indicator.file.elf.header.object_version
-
"0x1" for original ELF files.
type: keyword
-
threat.indicator.file.elf.header.os_abi
-
Application Binary Interface (ABI) of the Linux OS.
type: keyword
-
threat.indicator.file.elf.header.type
-
Header type of the ELF file.
type: keyword
-
threat.indicator.file.elf.header.version
-
Version of the ELF header.
type: keyword
-
threat.indicator.file.elf.imports
-
List of imported element names and types.
type: flattened
-
threat.indicator.file.elf.sections
-
An array containing an object for each section of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.sections.*
.type: nested
-
threat.indicator.file.elf.sections.chi2
-
Chi-square probability distribution of the section.
type: long
format: number
-
threat.indicator.file.elf.sections.entropy
-
Shannon entropy calculation from the section.
type: long
format: number
-
threat.indicator.file.elf.sections.flags
-
ELF Section List flags.
type: keyword
-
threat.indicator.file.elf.sections.name
-
ELF Section List name.
type: keyword
-
threat.indicator.file.elf.sections.physical_offset
-
ELF Section List offset.
type: keyword
-
threat.indicator.file.elf.sections.physical_size
-
ELF Section List physical size.
type: long
format: bytes
-
threat.indicator.file.elf.sections.type
-
ELF Section List type.
type: keyword
-
threat.indicator.file.elf.sections.virtual_address
-
ELF Section List virtual address.
type: long
format: string
-
threat.indicator.file.elf.sections.virtual_size
-
ELF Section List virtual size.
type: long
format: string
-
threat.indicator.file.elf.segments
-
An array containing an object for each segment of the ELF file. The keys that should be present in these objects are defined by sub-fields underneath
elf.segments.*
.type: nested
-
threat.indicator.file.elf.segments.sections
-
ELF object segment sections.
type: keyword
-
threat.indicator.file.elf.segments.type
-
ELF object segment type.
type: keyword
-
threat.indicator.file.elf.shared_libraries
-
List of shared libraries used by this ELF object.
type: keyword
-
threat.indicator.file.elf.telfhash
-
telfhash symbol hash for ELF file.
type: keyword
-
threat.indicator.file.extension
-
File extension, excluding the leading dot. Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
-
threat.indicator.file.fork_name
-
A fork is additional data associated with a filesystem object. On Linux, a resource fork is used to store additional data with a filesystem object. A file always has at least one fork for the data portion, and additional forks may exist. On NTFS, this is analogous to an Alternate Data Stream (ADS), and the default data stream for a file is just called $DATA. Zone.Identifier is commonly used by Windows to track contents downloaded from the Internet. An ADS is typically of the form:
C:\path\to\filename.extension:some_fork_name
, andsome_fork_name
is the value that should populatefork_name
.filename.extension
should populatefile.name
, andextension
should populatefile.extension
. The full path,file.path
, will include the fork name.type: keyword
example: Zone.Identifer
-
threat.indicator.file.gid
-
Primary group ID (GID) of the file.
type: keyword
example: 1001
-
threat.indicator.file.group
-
Primary group name of the file.
type: keyword
example: alice
-
threat.indicator.file.hash.md5
-
MD5 hash.
type: keyword
-
threat.indicator.file.hash.sha1
-
SHA1 hash.
type: keyword
-
threat.indicator.file.hash.sha256
-
SHA256 hash.
type: keyword
-
threat.indicator.file.hash.sha512
-
SHA512 hash.
type: keyword
-
threat.indicator.file.hash.ssdeep
-
SSDEEP hash.
type: keyword
-
threat.indicator.file.inode
-
Inode representing the file in the filesystem.
type: keyword
example: 256383
-
threat.indicator.file.mime_type
-
MIME type should identify the format of the file or stream of bytes using IANA official types, where possible. When more than one type is applicable, the most specific type should be used.
type: keyword
-
threat.indicator.file.mode
-
Mode of the file in octal representation.
type: keyword
example: 0640
-
threat.indicator.file.mtime
-
Last time the file content was modified.
type: date
-
threat.indicator.file.name
-
Name of the file including the extension, without the directory.
type: keyword
example: example.png
-
threat.indicator.file.owner
-
File owner’s username.
type: keyword
example: alice
-
threat.indicator.file.path
-
Full path to the file, including the file name. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice/example.png
-
threat.indicator.file.path.text
-
type: match_only_text
-
threat.indicator.file.pe.architecture
-
CPU architecture target for the file.
type: keyword
example: x64
-
threat.indicator.file.pe.company
-
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
-
threat.indicator.file.pe.description
-
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
-
threat.indicator.file.pe.file_version
-
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
-
threat.indicator.file.pe.imphash
-
A hash of the imports in a PE file. An imphash — or import hash — can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values. Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
-
threat.indicator.file.pe.original_file_name
-
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
-
threat.indicator.file.pe.product
-
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
-
threat.indicator.file.size
-
File size in bytes. Only relevant when
file.type
is "file".type: long
example: 16384
-
threat.indicator.file.target_path
-
Target path for symlinks.
type: keyword
-
threat.indicator.file.target_path.text
-
type: match_only_text
-
threat.indicator.file.type
-
File type (file, dir, or symlink).
type: keyword
example: file
-
threat.indicator.file.uid
-
The user ID (UID) or security identifier (SID) of the file owner.
type: keyword
example: 1001
-
threat.indicator.file.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
threat.indicator.file.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
threat.indicator.file.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
threat.indicator.file.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
threat.indicator.file.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
threat.indicator.file.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
threat.indicator.file.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
threat.indicator.file.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.indicator.file.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
threat.indicator.file.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
threat.indicator.file.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
threat.indicator.file.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
threat.indicator.file.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
threat.indicator.file.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
threat.indicator.file.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
threat.indicator.file.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
threat.indicator.file.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
threat.indicator.file.x509.subject.country
-
List of country © code
type: keyword
example: US
-
threat.indicator.file.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
threat.indicator.file.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
threat.indicator.file.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
threat.indicator.file.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
threat.indicator.file.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.indicator.file.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
-
threat.indicator.first_seen
-
The date and time when intelligence source first reported sighting this indicator.
type: date
example: 2020-11-05T17:25:47.000Z
-
threat.indicator.geo.city_name
-
City name.
type: keyword
example: Montreal
-
threat.indicator.geo.continent_code
-
Two-letter code representing continent’s name.
type: keyword
example: NA
-
threat.indicator.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
threat.indicator.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
threat.indicator.geo.country_name
-
Country name.
type: keyword
example: Canada
-
threat.indicator.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
threat.indicator.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
threat.indicator.geo.postal_code
-
Postal code associated with the location. Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
-
threat.indicator.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
threat.indicator.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
threat.indicator.geo.timezone
-
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
-
threat.indicator.ip
-
Identifies a threat indicator as an IP address (irrespective of direction).
type: ip
example: 1.2.3.4
-
threat.indicator.last_seen
-
The date and time when intelligence source last reported sighting this indicator.
type: date
example: 2020-11-05T17:25:47.000Z
-
threat.indicator.marking.tlp
-
Traffic Light Protocol sharing markings. Recommended values are: * WHITE * GREEN * AMBER * RED
type: keyword
example: WHITE
-
threat.indicator.modified_at
-
The date and time when intelligence source last modified information for this indicator.
type: date
example: 2020-11-05T17:25:47.000Z
-
threat.indicator.port
-
Identifies a threat indicator as a port number (irrespective of direction).
type: long
example: 443
-
threat.indicator.provider
-
The name of the indicator’s provider.
type: keyword
example: lrz_urlhaus
-
threat.indicator.reference
-
Reference URL linking to additional information about this indicator.
type: keyword
-
threat.indicator.registry.data.bytes
-
Original bytes written with base64 encoding. For Windows registry operations, such as SetValueEx and RegQueryValueEx, this corresponds to the data pointed by
lp_data
. This is optional but provides better recoverability and should be populated for REG_BINARY encoded values.type: keyword
example: ZQBuAC0AVQBTAAAAZQBuAAAAAAA=
-
threat.indicator.registry.data.strings
-
Content when writing string types. Populated as an array when writing string data to the registry. For single string registry types (REG_SZ, REG_EXPAND_SZ), this should be an array with one string. For sequences of string with REG_MULTI_SZ, this array will be variable length. For numeric data, such as REG_DWORD and REG_QWORD, this should be populated with the decimal representation (e.g
"1"
).type: wildcard
example: ["C:\rta\red_ttp\bin\myapp.exe"]
-
threat.indicator.registry.data.type
-
Standard registry type for encoding contents
type: keyword
example: REG_SZ
-
threat.indicator.registry.hive
-
Abbreviated name for the hive.
type: keyword
example: HKLM
-
threat.indicator.registry.key
-
Hive-relative path of keys.
type: keyword
example: SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe
-
threat.indicator.registry.path
-
Full path, including hive, key and value
type: keyword
example: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe\Debugger
-
threat.indicator.registry.value
-
Name of the value written.
type: keyword
example: Debugger
-
threat.indicator.scanner_stats
-
Count of AV/EDR vendors that successfully detected malicious file or URL.
type: long
example: 4
-
threat.indicator.sightings
-
Number of times this indicator was observed conducting threat activity.
type: long
example: 20
-
threat.indicator.type
-
Type of indicator as represented by Cyber Observable in STIX 2.0. Recommended values: * autonomous-system * artifact * directory * domain-name * email-addr * file * ipv4-addr * ipv6-addr * mac-addr * mutex * port * process * software * url * user-account * windows-registry-key * x509-certificate
type: keyword
example: ipv4-addr
-
threat.indicator.url.domain
-
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the
domain
field. If the URL contains a literal IPv6 address enclosed by[
and]
(IETF RFC 2732), the[
and]
characters should also be captured in thedomain
field.type: keyword
example: www.elastic.co
-
threat.indicator.url.extension
-
The field contains the file extension from the original request url, excluding the leading dot. The file extension is only set if it exists, as not every url has a file extension. The leading period must not be included. For example, the value must be "png", not ".png". Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
-
threat.indicator.url.fragment
-
Portion of the url after the
#
, such as "top". The#
is not part of the fragment.type: keyword
-
threat.indicator.url.full
-
If full URLs are important to your use case, they should be stored in
url.full
, whether this field is reconstructed or present in the event source.type: wildcard
example: https://www.elastic.co:443/search?q=elasticsearch#top
-
threat.indicator.url.full.text
-
type: match_only_text
-
threat.indicator.url.original
-
Unmodified original url as seen in the event source. Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
type: wildcard
example: https://www.elastic.co:443/search?q=elasticsearch#top or /search?q=elasticsearch
-
threat.indicator.url.original.text
-
type: match_only_text
-
threat.indicator.url.password
-
Password of the request.
type: keyword
-
threat.indicator.url.path
-
Path of the request, such as "/search".
type: wildcard
-
threat.indicator.url.port
-
Port of the request, such as 443.
type: long
example: 443
format: string
-
threat.indicator.url.query
-
The query field describes the query string of the request, such as "q=elasticsearch". The
?
is excluded from the query string. If a URL contains no?
, there is no query field. If there is a?
but no query, the query field exists with an empty string. Theexists
query can be used to differentiate between the two cases.type: keyword
-
threat.indicator.url.registered_domain
-
The highest registered url domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
threat.indicator.url.scheme
-
Scheme of the request, such as "https". Note: The
:
is not part of the scheme.type: keyword
example: https
-
threat.indicator.url.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
threat.indicator.url.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
threat.indicator.url.username
-
Username of the request.
type: keyword
-
threat.indicator.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
threat.indicator.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
threat.indicator.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
threat.indicator.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
threat.indicator.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
threat.indicator.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
threat.indicator.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
threat.indicator.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.indicator.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
threat.indicator.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
threat.indicator.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
threat.indicator.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
threat.indicator.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
threat.indicator.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
threat.indicator.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
threat.indicator.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
threat.indicator.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
threat.indicator.x509.subject.country
-
List of country © code
type: keyword
example: US
-
threat.indicator.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
threat.indicator.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
threat.indicator.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
threat.indicator.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
threat.indicator.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
threat.indicator.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
-
threat.software.alias
-
The alias(es) of the software for a set of related intrusion activity that are tracked by a common name in the security community. While not required, you can use a MITRE ATT&CK® associated software description.
type: keyword
example: [ "X-Agent" ]
-
threat.software.id
-
The id of the software used by this threat to conduct behavior commonly modeled using MITRE ATT&CK®. While not required, you can use a MITRE ATT&CK® software id.
type: keyword
example: S0552
-
threat.software.name
-
The name of the software used by this threat to conduct behavior commonly modeled using MITRE ATT&CK®. While not required, you can use a MITRE ATT&CK® software name.
type: keyword
example: AdFind
-
threat.software.platforms
-
The platforms of the software used by this threat to conduct behavior commonly modeled using MITRE ATT&CK®. Recommended Values: * AWS * Azure * Azure AD * GCP * Linux * macOS * Network * Office 365 * SaaS * Windows
While not required, you can use a MITRE ATT&CK® software platforms.
type: keyword
example: [ "Windows" ]
-
threat.software.reference
-
The reference URL of the software used by this threat to conduct behavior commonly modeled using MITRE ATT&CK®. While not required, you can use a MITRE ATT&CK® software reference URL.
type: keyword
-
threat.software.type
-
The type of software used by this threat to conduct behavior commonly modeled using MITRE ATT&CK®. Recommended values * Malware * Tool
While not required, you can use a MITRE ATT&CK® software type.
type: keyword
example: Tool
-
threat.tactic.id
-
The id of tactic used by this threat. You can use a MITRE ATT&CK® tactic, for example. (ex. https://attack.mitre.org/tactics/TA0002/ )
type: keyword
example: TA0002
-
threat.tactic.name
-
Name of the type of tactic used by this threat. You can use a MITRE ATT&CK® tactic, for example. (ex. https://attack.mitre.org/tactics/TA0002/)
type: keyword
example: Execution
-
threat.tactic.reference
-
The reference url of tactic used by this threat. You can use a MITRE ATT&CK® tactic, for example. (ex. https://attack.mitre.org/tactics/TA0002/ )
type: keyword
-
threat.technique.id
-
The id of technique used by this threat. You can use a MITRE ATT&CK® technique, for example. (ex. https://attack.mitre.org/techniques/T1059/)
type: keyword
example: T1059
-
threat.technique.name
-
The name of technique used by this threat. You can use a MITRE ATT&CK® technique, for example. (ex. https://attack.mitre.org/techniques/T1059/)
type: keyword
example: Command and Scripting Interpreter
-
threat.technique.name.text
-
type: match_only_text
-
threat.technique.reference
-
The reference url of technique used by this threat. You can use a MITRE ATT&CK® technique, for example. (ex. https://attack.mitre.org/techniques/T1059/)
type: keyword
-
threat.technique.subtechnique.id
-
The full id of subtechnique used by this threat. You can use a MITRE ATT&CK® subtechnique, for example. (ex. https://attack.mitre.org/techniques/T1059/001/)
type: keyword
example: T1059.001
-
threat.technique.subtechnique.name
-
The name of subtechnique used by this threat. You can use a MITRE ATT&CK® subtechnique, for example. (ex. https://attack.mitre.org/techniques/T1059/001/)
type: keyword
example: PowerShell
-
threat.technique.subtechnique.name.text
-
type: match_only_text
-
threat.technique.subtechnique.reference
-
The reference url of subtechnique used by this threat. You can use a MITRE ATT&CK® subtechnique, for example. (ex. https://attack.mitre.org/techniques/T1059/001/)
type: keyword
Fields related to a TLS connection. These fields focus on the TLS protocol itself and intentionally avoids in-depth analysis of the related x.509 certificate files.
-
tls.cipher
-
String indicating the cipher used during the current connection.
type: keyword
example: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
-
tls.client.certificate
-
PEM-encoded stand-alone certificate offered by the client. This is usually mutually-exclusive of
client.certificate_chain
since this value also exists in that list.type: keyword
example: MII…
-
tls.client.certificate_chain
-
Array of PEM-encoded certificates that make up the certificate chain offered by the client. This is usually mutually-exclusive of
client.certificate
since that value should be the first certificate in the chain.type: keyword
example: ["MII…", "MII…"]
-
tls.client.hash.md5
-
Certificate fingerprint using the MD5 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0F76C7F2C55BFD7D8E8B8F4BFBF0C9EC
-
tls.client.hash.sha1
-
Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 9E393D93138888D288266C2D915214D1D1CCEB2A
-
tls.client.hash.sha256
-
Certificate fingerprint using the SHA256 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0687F666A054EF17A08E2F2162EAB4CBC0D265E1D7875BE74BF3C712CA92DAF0
-
tls.client.issuer
-
Distinguished name of subject of the issuer of the x.509 certificate presented by the client.
type: keyword
example: CN=Example Root CA, OU=Infrastructure Team, DC=example, DC=com
-
tls.client.ja3
-
A hash that identifies clients based on how they perform an SSL/TLS handshake.
type: keyword
example: d4e5b18d6b55c71272893221c96ba240
-
tls.client.not_after
-
Date/Time indicating when client certificate is no longer considered valid.
type: date
example: 2021-01-01T00:00:00.000Z
-
tls.client.not_before
-
Date/Time indicating when client certificate is first considered valid.
type: date
example: 1970-01-01T00:00:00.000Z
-
tls.client.server_name
-
Also called an SNI, this tells the server which hostname to which the client is attempting to connect to. When this value is available, it should get copied to
destination.domain
.type: keyword
example: www.elastic.co
-
tls.client.subject
-
Distinguished name of subject of the x.509 certificate presented by the client.
type: keyword
example: CN=myclient, OU=Documentation Team, DC=example, DC=com
-
tls.client.supported_ciphers
-
Array of ciphers offered by the client during the client hello.
type: keyword
example: ["TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", "…"]
-
tls.client.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
tls.client.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
tls.client.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
tls.client.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
tls.client.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
tls.client.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
tls.client.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
tls.client.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
tls.client.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
tls.client.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
tls.client.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
tls.client.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
tls.client.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
tls.client.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
tls.client.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
tls.client.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
tls.client.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
tls.client.x509.subject.country
-
List of country © code
type: keyword
example: US
-
tls.client.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
tls.client.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
tls.client.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
tls.client.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
tls.client.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
tls.client.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
-
tls.curve
-
String indicating the curve used for the given cipher, when applicable.
type: keyword
example: secp256r1
-
tls.established
-
Boolean flag indicating if the TLS negotiation was successful and transitioned to an encrypted tunnel.
type: boolean
-
tls.next_protocol
-
String indicating the protocol being tunneled. Per the values in the IANA registry (https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids), this string should be lower case.
type: keyword
example: http/1.1
-
tls.resumed
-
Boolean flag indicating if this TLS connection was resumed from an existing TLS negotiation.
type: boolean
-
tls.server.certificate
-
PEM-encoded stand-alone certificate offered by the server. This is usually mutually-exclusive of
server.certificate_chain
since this value also exists in that list.type: keyword
example: MII…
-
tls.server.certificate_chain
-
Array of PEM-encoded certificates that make up the certificate chain offered by the server. This is usually mutually-exclusive of
server.certificate
since that value should be the first certificate in the chain.type: keyword
example: ["MII…", "MII…"]
-
tls.server.hash.md5
-
Certificate fingerprint using the MD5 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0F76C7F2C55BFD7D8E8B8F4BFBF0C9EC
-
tls.server.hash.sha1
-
Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 9E393D93138888D288266C2D915214D1D1CCEB2A
-
tls.server.hash.sha256
-
Certificate fingerprint using the SHA256 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0687F666A054EF17A08E2F2162EAB4CBC0D265E1D7875BE74BF3C712CA92DAF0
-
tls.server.issuer
-
Subject of the issuer of the x.509 certificate presented by the server.
type: keyword
example: CN=Example Root CA, OU=Infrastructure Team, DC=example, DC=com
-
tls.server.ja3s
-
A hash that identifies servers based on how they perform an SSL/TLS handshake.
type: keyword
example: 394441ab65754e2207b1e1b457b3641d
-
tls.server.not_after
-
Timestamp indicating when server certificate is no longer considered valid.
type: date
example: 2021-01-01T00:00:00.000Z
-
tls.server.not_before
-
Timestamp indicating when server certificate is first considered valid.
type: date
example: 1970-01-01T00:00:00.000Z
-
tls.server.subject
-
Subject of the x.509 certificate presented by the server.
type: keyword
example: CN=www.example.com, OU=Infrastructure Team, DC=example, DC=com
-
tls.server.x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
tls.server.x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
tls.server.x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
tls.server.x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
tls.server.x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
tls.server.x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
tls.server.x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
tls.server.x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
tls.server.x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
tls.server.x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
tls.server.x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
tls.server.x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
tls.server.x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
tls.server.x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
tls.server.x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
tls.server.x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
tls.server.x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
tls.server.x509.subject.country
-
List of country © code
type: keyword
example: US
-
tls.server.x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
tls.server.x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
tls.server.x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
tls.server.x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
tls.server.x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
tls.server.x509.version_number
-
Version of x509 format.
type: keyword
example: 3
-
tls.version
-
Numeric part of the version parsed from the original string.
type: keyword
example: 1.2
-
tls.version_protocol
-
Normalized lowercase protocol name parsed from original string.
type: keyword
example: tls
-
span.id
-
Unique identifier of the span within the scope of its trace. A span represents an operation within a transaction, such as a request to another service, or a database query.
type: keyword
example: 3ff9a8981b7ccd5a
-
trace.id
-
Unique identifier of the trace. A trace groups multiple events like transactions that belong together. For example, a user request handled by multiple inter-connected services.
type: keyword
example: 4bf92f3577b34da6a3ce929d0e0e4736
-
transaction.id
-
Unique identifier of the transaction within the scope of its trace. A transaction is the highest level of work measured within a service, such as a request to a server.
type: keyword
example: 00f067aa0ba902b7
URL fields provide support for complete or partial URLs, and supports the breaking down into scheme, domain, path, and so on.
-
url.domain
-
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the
domain
field. If the URL contains a literal IPv6 address enclosed by[
and]
(IETF RFC 2732), the[
and]
characters should also be captured in thedomain
field.type: keyword
example: www.elastic.co
-
url.extension
-
The field contains the file extension from the original request url, excluding the leading dot. The file extension is only set if it exists, as not every url has a file extension. The leading period must not be included. For example, the value must be "png", not ".png". Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
-
url.fragment
-
Portion of the url after the
#
, such as "top". The#
is not part of the fragment.type: keyword
-
url.full
-
If full URLs are important to your use case, they should be stored in
url.full
, whether this field is reconstructed or present in the event source.type: wildcard
example: https://www.elastic.co:443/search?q=elasticsearch#top
-
url.full.text
-
type: match_only_text
-
url.original
-
Unmodified original url as seen in the event source. Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
type: wildcard
example: https://www.elastic.co:443/search?q=elasticsearch#top or /search?q=elasticsearch
-
url.original.text
-
type: match_only_text
-
url.password
-
Password of the request.
type: keyword
-
url.path
-
Path of the request, such as "/search".
type: wildcard
-
url.port
-
Port of the request, such as 443.
type: long
example: 443
format: string
-
url.query
-
The query field describes the query string of the request, such as "q=elasticsearch". The
?
is excluded from the query string. If a URL contains no?
, there is no query field. If there is a?
but no query, the query field exists with an empty string. Theexists
query can be used to differentiate between the two cases.type: keyword
-
url.registered_domain
-
The highest registered url domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
-
url.scheme
-
Scheme of the request, such as "https". Note: The
:
is not part of the scheme.type: keyword
example: https
-
url.subdomain
-
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
-
url.top_level_domain
-
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
-
url.username
-
Username of the request.
type: keyword
The user fields describe information about the user that is relevant to the event. Fields can have one entry or multiple entries. If a user has more than one id, provide an array that includes all of them.
-
user.changes.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.changes.email
-
User email address.
type: keyword
-
user.changes.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
user.changes.full_name.text
-
type: match_only_text
-
user.changes.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.changes.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
user.changes.group.name
-
Name of the group.
type: keyword
-
user.changes.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
user.changes.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
user.changes.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
user.changes.name.text
-
type: match_only_text
-
user.changes.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
-
user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.effective.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.effective.email
-
User email address.
type: keyword
-
user.effective.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
user.effective.full_name.text
-
type: match_only_text
-
user.effective.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.effective.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
user.effective.group.name
-
Name of the group.
type: keyword
-
user.effective.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
user.effective.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
user.effective.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
user.effective.name.text
-
type: match_only_text
-
user.effective.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
-
user.email
-
User email address.
type: keyword
-
user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
user.full_name.text
-
type: match_only_text
-
user.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
user.group.name
-
Name of the group.
type: keyword
-
user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
user.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
user.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
user.name.text
-
type: match_only_text
-
user.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
-
user.target.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.target.email
-
User email address.
type: keyword
-
user.target.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
user.target.full_name.text
-
type: match_only_text
-
user.target.group.domain
-
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.target.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
user.target.group.name
-
Name of the group.
type: keyword
-
user.target.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
user.target.id
-
Unique identifier of the user.
type: keyword
example: S-1-5-21-202424912787-2692429404-2351956786-1000
-
user.target.name
-
Short name or login of the user.
type: keyword
example: a.einstein
-
user.target.name.text
-
type: match_only_text
-
user.target.roles
-
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
The user_agent fields normally come from a browser request. They often show up in web service logs coming from the parsed user agent string.
-
user_agent.device.name
-
Name of the device.
type: keyword
example: iPhone
-
user_agent.name
-
Name of the user agent.
type: keyword
example: Safari
-
user_agent.original
-
Unparsed user_agent string.
type: keyword
example: Mozilla/5.0 (iPhone; CPU iPhone OS 12_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.0 Mobile/15E148 Safari/604.1
-
user_agent.original.text
-
type: match_only_text
-
user_agent.os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
user_agent.os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
user_agent.os.full.text
-
type: match_only_text
-
user_agent.os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
user_agent.os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
user_agent.os.name.text
-
type: match_only_text
-
user_agent.os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
user_agent.os.type
-
Use the
os.type
field to categorize the operating system into one of the broad commercial families. One of these following values should be used (lowercase): linux, macos, unix, windows. If the OS you’re dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.type: keyword
example: macos
-
user_agent.os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
-
user_agent.version
-
Version of the user agent.
type: keyword
example: 12.0
The VLAN fields are used to identify 802.1q tag(s) of a packet, as well as ingress and egress VLAN associations of an observer in relation to a specific packet or connection. Network.vlan fields are used to record a single VLAN tag, or the outer tag in the case of q-in-q encapsulations, for a packet or connection as observed, typically provided by a network sensor (e.g. Zeek, Wireshark) passively reporting on traffic. Network.inner VLAN fields are used to report inner q-in-q 802.1q tags (multiple 802.1q encapsulations) as observed, typically provided by a network sensor (e.g. Zeek, Wireshark) passively reporting on traffic. Network.inner VLAN fields should only be used in addition to network.vlan fields to indicate q-in-q tagging. Observer.ingress and observer.egress VLAN values are used to record observer specific information when observer events contain discrete ingress and egress VLAN information, typically provided by firewalls, routers, or load balancers.
-
vlan.id
-
VLAN ID as reported by the observer.
type: keyword
example: 10
-
vlan.name
-
Optional VLAN name as reported by the observer.
type: keyword
example: outside
The vulnerability fields describe information about a vulnerability that is relevant to an event.
-
vulnerability.category
-
The type of system or architecture that the vulnerability affects. These may be platform-specific (for example, Debian or SUSE) or general (for example, Database or Firewall). For example (Qualys vulnerability categories) This field must be an array.
type: keyword
example: ["Firewall"]
-
vulnerability.classification
-
The classification of the vulnerability scoring system. For example (https://www.first.org/cvss/)
type: keyword
example: CVSS
-
vulnerability.description
-
The description of the vulnerability that provides additional context of the vulnerability. For example (Common Vulnerabilities and Exposure CVE description)
type: keyword
example: In macOS before 2.12.6, there is a vulnerability in the RPC…
-
vulnerability.description.text
-
type: match_only_text
-
vulnerability.enumeration
-
The type of identifier used for this vulnerability. For example (https://cve.mitre.org/about/)
type: keyword
example: CVE
-
vulnerability.id
-
The identification (ID) is the number portion of a vulnerability entry. It includes a unique identification number for the vulnerability. For example (Common Vulnerabilities and Exposure CVE ID
type: keyword
example: CVE-2019-00001
-
vulnerability.reference
-
A resource that provides additional information, context, and mitigations for the identified vulnerability.
type: keyword
example: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6111
-
vulnerability.report_id
-
The report or scan identification number.
type: keyword
example: 20191018.0001
-
vulnerability.scanner.vendor
-
The name of the vulnerability scanner vendor.
type: keyword
example: Tenable
-
vulnerability.score.base
-
Scores can range from 0.0 to 10.0, with 10.0 being the most severe. Base scores cover an assessment for exploitability metrics (attack vector, complexity, privileges, and user interaction), impact metrics (confidentiality, integrity, and availability), and scope. For example (https://www.first.org/cvss/specification-document)
type: float
example: 5.5
-
vulnerability.score.environmental
-
Scores can range from 0.0 to 10.0, with 10.0 being the most severe. Environmental scores cover an assessment for any modified Base metrics, confidentiality, integrity, and availability requirements. For example (https://www.first.org/cvss/specification-document)
type: float
example: 5.5
-
vulnerability.score.temporal
-
Scores can range from 0.0 to 10.0, with 10.0 being the most severe. Temporal scores cover an assessment for code maturity, remediation level, and confidence. For example (https://www.first.org/cvss/specification-document)
type: float
-
vulnerability.score.version
-
The National Vulnerability Database (NVD) provides qualitative severity rankings of "Low", "Medium", and "High" for CVSS v2.0 base score ranges in addition to the severity ratings for CVSS v3.0 as they are defined in the CVSS v3.0 specification. CVSS is owned and managed by FIRST.Org, Inc. (FIRST), a US-based non-profit organization, whose mission is to help computer security incident response teams across the world. For example (https://nvd.nist.gov/vuln-metrics/cvss)
type: keyword
example: 2.0
-
vulnerability.severity
-
The severity of the vulnerability can help with metrics and internal prioritization regarding remediation. For example (https://nvd.nist.gov/vuln-metrics/cvss)
type: keyword
example: Critical
This implements the common core fields for x509 certificates. This information is likely logged with TLS sessions, digital signatures found in executable binaries, S/MIME information in email bodies, or analysis of files on disk.
When the certificate relates to a file, use the fields at file.x509
. When hashes of the DER-encoded certificate are available, the hash
data set should be populated as well (e.g. file.hash.sha256
).
Events that contain certificate information about network connections, should use the x509 fields under the relevant TLS fields: tls.server.x509
and/or tls.client.x509
.
-
x509.alternative_names
-
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
-
x509.issuer.common_name
-
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
-
x509.issuer.country
-
List of country © codes
type: keyword
example: US
-
x509.issuer.distinguished_name
-
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
-
x509.issuer.locality
-
List of locality names (L)
type: keyword
example: Mountain View
-
x509.issuer.organization
-
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
-
x509.issuer.organizational_unit
-
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
-
x509.issuer.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
x509.not_after
-
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
-
x509.not_before
-
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
-
x509.public_key_algorithm
-
Algorithm used to generate the public key.
type: keyword
example: RSA
-
x509.public_key_curve
-
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
-
x509.public_key_exponent
-
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
-
x509.public_key_size
-
The size of the public key space in bits.
type: long
example: 2048
-
x509.serial_number
-
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
-
x509.signature_algorithm
-
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
-
x509.subject.common_name
-
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
-
x509.subject.country
-
List of country © code
type: keyword
example: US
-
x509.subject.distinguished_name
-
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
-
x509.subject.locality
-
List of locality names (L)
type: keyword
example: San Francisco
-
x509.subject.organization
-
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
-
x509.subject.organizational_unit
-
List of organizational units (OU) of subject.
type: keyword
-
x509.subject.state_or_province
-
List of state or province names (ST, S, or P)
type: keyword
example: California
-
x509.version_number
-
Version of x509 format.
type: keyword
example: 3