- Elasticsearch - The Definitive Guide:
- Foreword
- Preface
- Getting Started
- You Know, for Search…
- Installing Elasticsearch
- Running Elasticsearch
- Talking to Elasticsearch
- Document Oriented
- Finding Your Feet
- Indexing Employee Documents
- Retrieving a Document
- Search Lite
- Search with Query DSL
- More-Complicated Searches
- Full-Text Search
- Phrase Search
- Highlighting Our Searches
- Analytics
- Tutorial Conclusion
- Distributed Nature
- Next Steps
- Life Inside a Cluster
- Data In, Data Out
- What Is a Document?
- Document Metadata
- Indexing a Document
- Retrieving a Document
- Checking Whether a Document Exists
- Updating a Whole Document
- Creating a New Document
- Deleting a Document
- Dealing with Conflicts
- Optimistic Concurrency Control
- Partial Updates to Documents
- Retrieving Multiple Documents
- Cheaper in Bulk
- Distributed Document Store
- Searching—The Basic Tools
- Mapping and Analysis
- Full-Body Search
- Sorting and Relevance
- Distributed Search Execution
- Index Management
- Inside a Shard
- You Know, for Search…
- Search in Depth
- Structured Search
- Full-Text Search
- Multifield Search
- Proximity Matching
- Partial Matching
- Controlling Relevance
- Theory Behind Relevance Scoring
- Lucene’s Practical Scoring Function
- Query-Time Boosting
- Manipulating Relevance with Query Structure
- Not Quite Not
- Ignoring TF/IDF
- function_score Query
- Boosting by Popularity
- Boosting Filtered Subsets
- Random Scoring
- The Closer, The Better
- Understanding the price Clause
- Scoring with Scripts
- Pluggable Similarity Algorithms
- Changing Similarities
- Relevance Tuning Is the Last 10%
- Dealing with Human Language
- Aggregations
- Geolocation
- Modeling Your Data
- Administration, Monitoring, and Deployment
WARNING: The 1.x versions of Elasticsearch have passed their EOL dates. If you are running a 1.x version, we strongly advise you to upgrade.
This documentation is no longer maintained and may be removed. For the latest information, see the current Elasticsearch documentation.
Sorting by Nested Fields
editSorting by Nested Fields
editIt is possible to sort by the value of a nested field, even though the value exists in a separate nested document. To make the result more interesting, we will add another record:
PUT /my_index/blogpost/2 { "title": "Investment secrets", "body": "What they don't tell you ...", "tags": [ "shares", "equities" ], "comments": [ { "name": "Mary Brown", "comment": "Lies, lies, lies", "age": 42, "stars": 1, "date": "2014-10-18" }, { "name": "John Smith", "comment": "You're making it up!", "age": 28, "stars": 2, "date": "2014-10-16" } ] }
Imagine that we want to retrieve blog posts that received comments in October,
ordered by the lowest number of stars
that each blog post received. The
search request would look like this:
GET /_search { "query": { "nested": { "path": "comments", "filter": { "range": { "comments.date": { "gte": "2014-10-01", "lt": "2014-11-01" } } } } }, "sort": { "comments.stars": { "order": "asc", "mode": "min", "nested_filter": { "range": { "comments.date": { "gte": "2014-10-01", "lt": "2014-11-01" } } } } } }
The |
|
Results are sorted in ascending ( |
|
The |
Why do we need to repeat the query conditions in the nested_filter
? The
reason is that sorting happens after the query has been executed. The query
matches blog posts that received comments in October, but it returns
blog post documents as the result. If we didn’t include the nested_filter
clause, we would end up sorting based on any comments that the blog post has
ever received, not just those received in October.