Elastic fügt dem Elastic Stack Machine Learning hinzu

Das erste Set an Funktionen für nicht überwachtes (unsupervised) maschinelles Lernen vereinfacht die Anomalie-Erkennung bei Zeitreihen-Anwendungsfällen

Mountain View, Kalifornien, und Amsterdam, Niederlande 4. Mai 2017

Elastic, die Firma hinter Elasticsearch und dem Elastic Stack, der am meisten genutzten Sammlung von Open-Source-Produkten zur Lösung unternehmenskritischer Anwendungsfälle wie Suche, Logging und Analytik, gibt die Einführung ihrer ersten Machine-Learning-Funktionen in Version 5.4 von Elastic bekannt. Auf Grundlage der kürzlich erfolgten Übernahme von Prelert greifen die neuen Funktionen das zunehmende Verlangen von Kunden auf, Machine-Learning-Technologie einzusetzen, ohne dass interne Fachkenntnisse oder eine eigene Entwicklung nötig sind. Die neuen Machine-Learning-Funktionen von Elastic bieten eine fertige Lösung für jeden Zeitreihen-Datensatz, die automatisch Anomalien identifiziert, die Ursachenanalyse optimiert und False Positives in Echtzeitanwendungen reduziert. Die Technologie liefert schnelle Unternehmensvorteile für Firmen, die Probleme in ihrer Infrastruktur, Cyber-Angriffe oder Unternehmensprobleme in Echtzeit aufdecken wollen.

„Es ist unsere Vision, dem Prozess die Komplexität zu nehmen und es für unsere Nutzer einfach zu machen, Machine Learning innerhalb des Elastic Stack für Anwendungsfälle wie Logging, Sicherheit und Metriken einzusetzen“, so Shay Banon, Gründer und CEO von Elastic. „Ich freue mich, dass unsere neuen, nicht-überwachten Machine-Learning-Funktionen unseren Nutzern eine skalierte, sofort einsetzbare Möglichkeit bieten, Anomalien in ihren Zeitreihendaten zu finden, und das als natürliche Erweiterung von Suche und Analytik.“

Organisationen wollen zunehmend Echtzeit-Analysen erhalten und operationalisieren. Aus diesem Grund hat sich der Elastic Stack für Entwickler und IT-Teams zu einem der meistgenutzten Tools zum Sammeln, Anreichern und Analysieren von Log-Dateien, Sicherheitsdaten, Metriken, Textdokumenten und vielem mehr entwickelt. Aber die von solchen Organisationen generierten Daten werden immer umfassender und komplexer, was traditionelle Ansätze zur Datenanalyse unpraktisch macht. Drittanbieter- und standardmäßig erhältliche Machine-Learning-Toolkits bieten zwar die Möglichkeit, Statistikmodelle zu erstellen, doch die größte Herausforderung besteht darin, Echtzeit-Betriebssysteme für bestehende Workstreams und Anwendungsfälle zu entwickeln. Zur Entwicklung der richtigen statistischen Modelle für verschiedene, breitgefächerte Datensätze sind seltene und teure Datenanalysefähigkeiten nötig. Zudem sind von Hand erstellte Regeln instabil und generieren oft viele False Positives.

Jetzt verfügbar in Version 5.4 als Funktion von X-Pack: Der erste Satz an nicht-überwachten Machine-Learning-Funktionen von Elastic, der die Anomalie-Erkennung bei Zeitreihendaten wie Log-Dateien, Anwendungs- und Performance-Metriken, Netzwerk-Flows oder auch Finanz-/Transaktionsdaten automatisiert. Durch den Einsatz bestehender und kontinuierlicher Daten aus Elasticsearch bieten die neuen Machine-Learning-Funktionen den Elastic Nutzern eine sofort einsatzbereite Lösung zum Operationalisieren ihrer Arbeitsabläufe und Anwendungsfälle wie Logging, Sicherheits- sowie Metrikanalysen in Echtzeit. Darüber hinaus ermöglichen diese Funktionen, ausgereifte Machine-Learning-Aufträge mit der vertrauten, benutzerfreundlichen Kibana-UI zu erstellen und Komplexität und umständliche Integrationen zu minimieren. Zusätzliche Vorteile:

  • Wird als Bestandteil von X-Pack mit nur einem Befehl in Elasticsearch und Kibana installiert
  • Native Integration in den Elastic Stack; es müssen keine Daten aus Elasticsearch exportiert werden  
  • Intuitive Benutzeroberfläche zur Erstellung von Machine-Learning-Aufträgen und zur Analyse von erkannten Anomalien für viele verschiedene Datentypen (Log-Nachrichten, Netzwerkverkehr, Metriken)
  • Läuft mit Elasticsearch – äußerst skalierbar und hochverfügbar
  • Vollständige Unterstützung der Alerting-Funktionen für proaktive Benachrichtigungen von X-Pack

Mehr erfahren

Über Elastic

Elastic entwickelt Software, um Daten für Such-, Logging-, Sicherheits- und Analytikanwendungsfälle in Echtzeit besser nutzbar zu machen und zu skalieren. Das 2012 gegründete Unternehmen entwickelt die Open-Source-Lösung Elastic Stack (Elasticsearch, Kibana, Beats und Logstash), X-Pack (kommerzielle Funktionen) und Elastic Cloud (gehostetes Angebot). Bisher wurden die Produkte insgesamt über 100 Millionen Mal heruntergeladen. Elastic wird von Benchmark Capital, Index Ventures und NEA durch Investitionen in Höhe von über 100 Mio. USD unterstützt und beschäftigt über 500 Mitarbeiter in 30 Ländern. Weitere Informationen gibt es unter elastic.co.

###

Pressekontakte bei Elastic

AMER
Michael Lindenberger
Reidy Communications for Elastic
michael@reidycommunications.com
+1-415-531-1449
EMEA-Raum
Rory MacDonald
Age of Peers Ltd for Elastic
rory@ageofpeers.com
+44 (0)7899 965232
APAC
Janis Ma
Elastic Asia Pacific
janis@elastic.co
+852 3552 2927