- .NET Clients: other versions:
- Introduction
- Breaking changes
- API Conventions
- Elasticsearch.Net - Low level client
- NEST - High level client
- Troubleshooting
- Search
- Query DSL
- Full text queries
- Term level queries
- Exists Query Usage
- Fuzzy Date Query Usage
- Fuzzy Numeric Query Usage
- Fuzzy Query Usage
- Ids Query Usage
- Prefix Query Usage
- Date Range Query Usage
- Long Range Query Usage
- Numeric Range Query Usage
- Term Range Query Usage
- Regexp Query Usage
- Term Query Usage
- Terms List Query Usage
- Terms Lookup Query Usage
- Terms Query Usage
- Terms Set Query Usage
- Type Query Usage
- Wildcard Query Usage
- Compound queries
- Joining queries
- Geo queries
- Geo Bounding Box Query Usage
- Geo Distance Query Usage
- Geo Polygon Query Usage
- Geo Shape Circle Query Usage
- Geo Shape Envelope Query Usage
- Geo Shape Geometry Collection Query Usage
- Geo Shape Indexed Shape Query Usage
- Geo Shape Line String Query Usage
- Geo Shape Multi Line String Query Usage
- Geo Shape Multi Point Query Usage
- Geo Shape Multi Polygon Query Usage
- Geo Shape Point Query Usage
- Geo Shape Polygon Query Usage
- Specialized queries
- Span queries
- NEST specific queries
- Aggregations
- Metric Aggregations
- Average Aggregation Usage
- Cardinality Aggregation Usage
- Extended Stats Aggregation Usage
- Geo Bounds Aggregation Usage
- Geo Centroid Aggregation Usage
- Max Aggregation Usage
- Median Absolute Deviation Aggregation Usage
- Min Aggregation Usage
- Percentile Ranks Aggregation Usage
- Percentiles Aggregation Usage
- Scripted Metric Aggregation Usage
- Stats Aggregation Usage
- Sum Aggregation Usage
- Top Hits Aggregation Usage
- Value Count Aggregation Usage
- Weighted Average Aggregation Usage
- Bucket Aggregations
- Adjacency Matrix Usage
- Auto Date Histogram Aggregation Usage
- Children Aggregation Usage
- Composite Aggregation Usage
- Date Histogram Aggregation Usage
- Date Range Aggregation Usage
- Filter Aggregation Usage
- Filters Aggregation Usage
- Geo Distance Aggregation Usage
- Geo Hash Grid Aggregation Usage
- Global Aggregation Usage
- Histogram Aggregation Usage
- Ip Range Aggregation Usage
- Missing Aggregation Usage
- Nested Aggregation Usage
- Parent Aggregation Usage
- Range Aggregation Usage
- Reverse Nested Aggregation Usage
- Sampler Aggregation Usage
- Significant Terms Aggregation Usage
- Significant Text Aggregation Usage
- Terms Aggregation Usage
- Pipeline Aggregations
- Average Bucket Aggregation Usage
- Bucket Script Aggregation Usage
- Bucket Selector Aggregation Usage
- Bucket Sort Aggregation Usage
- Cumulative Sum Aggregation Usage
- Derivative Aggregation Usage
- Extended Stats Bucket Aggregation Usage
- Max Bucket Aggregation Usage
- Min Bucket Aggregation Usage
- Moving Average Ewma Aggregation Usage
- Moving Average Holt Linear Aggregation Usage
- Moving Average Holt Winters Aggregation Usage
- Moving Average Linear Aggregation Usage
- Moving Average Simple Aggregation Usage
- Moving Function Aggregation Usage
- Percentiles Bucket Aggregation Usage
- Serial Differencing Aggregation Usage
- Stats Bucket Aggregation Usage
- Sum Bucket Aggregation Usage
- Matrix Aggregations
- Metric Aggregations
NOTE: You are looking at documentation for an older release. For the latest information, see the current release documentation.
Function Score Query Usage
edit
IMPORTANT: This documentation is no longer updated. Refer to Elastic's version policy and the latest documentation.
Function Score Query Usage
editFluent DSL example
editq .FunctionScore(c => c .Name("named_query") .Boost(1.1) .Query(qq => qq.MatchAll()) .BoostMode(FunctionBoostMode.Multiply) .ScoreMode(FunctionScoreMode.Sum) .MaxBoost(20.0) .MinScore(1.0) .Functions(f => f .Exponential(b => b.Field(p => p.NumberOfCommits).Decay(0.5).Origin(1.0).Scale(0.1).Weight(2.1)) .GaussDate(b => b.Field(p => p.LastActivity).Origin(DateMath.Now).Decay(0.5).Scale("1d")) .LinearGeoLocation(b => b.Field(p => p.LocationPoint).Origin(new GeoLocation(70, -70)).Scale(Distance.Miles(1)).MultiValueMode(MultiValueMode.Average)) .FieldValueFactor(b => b.Field(p => p.NumberOfContributors).Factor(1.1).Missing(0.1).Modifier(FieldValueFactorModifier.Square)) .RandomScore(r => r.Seed(1337).Field("_seq_no")) .RandomScore(r => r.Seed("randomstring").Field("_seq_no")) .Weight(1.0) .ScriptScore(s => s.Script(ss => ss.Source("Math.log(2 + doc['numberOfCommits'].value)"))) ) )
Object Initializer syntax example
editnew FunctionScoreQuery() { Name = "named_query", Boost = 1.1, Query = new MatchAllQuery { }, BoostMode = FunctionBoostMode.Multiply, ScoreMode = FunctionScoreMode.Sum, MaxBoost = 20.0, MinScore = 1.0, Functions = new List<IScoreFunction> { new ExponentialDecayFunction { Origin = 1.0, Decay = 0.5, Field = Field<Project>(p => p.NumberOfCommits), Scale = 0.1, Weight = 2.1 }, new GaussDateDecayFunction { Origin = DateMath.Now, Field = Field<Project>(p => p.LastActivity), Decay = 0.5, Scale = TimeSpan.FromDays(1) }, new LinearGeoDecayFunction { Origin = new GeoLocation(70, -70), Field = Field<Project>(p => p.LocationPoint), Scale = Distance.Miles(1), MultiValueMode = MultiValueMode.Average }, new FieldValueFactorFunction { Field = Field<Project>(p => p.NumberOfContributors), Factor = 1.1, Missing = 0.1, Modifier = FieldValueFactorModifier.Square }, new RandomScoreFunction { Seed = 1337, Field = "_seq_no" }, new RandomScoreFunction { Seed = "randomstring", Field = "_seq_no" }, new WeightFunction { Weight = 1.0 }, new ScriptScoreFunction { Script = new ScriptQuery{ Source = "Math.log(2 + doc['numberOfCommits'].value)" } } } }
Example json output.
{ "function_score": { "_name": "named_query", "boost": 1.1, "boost_mode": "multiply", "functions": [ { "exp": { "numberOfCommits": { "origin": 1.0, "scale": 0.1, "decay": 0.5 } }, "weight": 2.1 }, { "gauss": { "lastActivity": { "origin": "now", "scale": "1d", "decay": 0.5 } } }, { "linear": { "locationPoint": { "origin": { "lat": 70.0, "lon": -70.0 }, "scale": "1.0mi" }, "multi_value_mode": "avg" } }, { "field_value_factor": { "field": "numberOfContributors", "factor": 1.1, "missing": 0.1, "modifier": "square" } }, { "random_score": { "seed": 1337, "field": "_seq_no" } }, { "random_score": { "seed": "randomstring", "field": "_seq_no" } }, { "weight": 1.0 }, { "script_score": { "script": { "source": "Math.log(2 + doc['numberOfCommits'].value)" } } } ], "max_boost": 20.0, "min_score": 1.0, "query": { "match_all": {} }, "score_mode": "sum" } }
Was this helpful?
Thank you for your feedback.