Relevance workbench
In this workbench, you can compare our Elastic Learned Sparse Encoder model (with or without RRF) and traditional textual search using BM25.
Start comparing different hybrid search techniques using TMDB's movies dataset as sample data. Or fork the code and ingest your own data to try it on your own!
Try these queries to get started:
- "The matrix"
- "Movies in Space"
- "Superhero animated movies"
Notice how some queries work great for both search techniques. For example, 'The Matrix' performs well with both models. However, for queries like "Superhero animated movies", the Elastic Learned Sparse Encoder model outperforms BM25. This can be attributed to the semantic search capabilities of the model.
Explore similar demos
Buscar
Elasticsearch en 2 minutos
En esta demostración, mostramos cómo Elasticsearch permite aplicaciones de búsqueda impulsadas por IA y GenAI listas para producción, desde el indexado e incrustación de tus datos hasta el anclaje de grandes modelos de lenguaje con Retrieval-Augmented Generation (RAG). Verás cómo los desarrolladores pueden pasar de datos sin procesar a una experiencia de búsqueda en GenAI totalmente funcional, ...