Query parameters
-
Specifies the amount of time to wait for the inference request to complete.
External documentation
Body
Required
input
string | array[string] | object | array[object] Inference input. Either a string, an array of strings, a
contentobject, or an array ofcontentobjects.string example:
"input": "Some text"string array example:
"input": ["Some text", "Some more text"]contentobject example:"input": { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } }contentobject array example:"input": [ { "content": { "type": "text", "format": "text", "value": "Some text to generate an embedding" } }, { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } } ]One of: Inference input. Either a string, an array of strings, a
contentobject, or an array ofcontentobjects.string example:
"input": "Some text"string array example:
"input": ["Some text", "Some more text"]contentobject example:"input": { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } }contentobject array example:"input": [ { "content": { "type": "text", "format": "text", "value": "Some text to generate an embedding" } }, { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } } ]Inference input. Either a string, an array of strings, a
contentobject, or an array ofcontentobjects.string example:
"input": "Some text"string array example:
"input": ["Some text", "Some more text"]contentobject example:"input": { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } }contentobject array example:"input": [ { "content": { "type": "text", "format": "text", "value": "Some text to generate an embedding" } }, { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } } ]Inference input. Either a string, an array of strings, a
contentobject, or an array ofcontentobjects.string example:
"input": "Some text"string array example:
"input": ["Some text", "Some more text"]contentobject example:"input": { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } }contentobject array example:"input": [ { "content": { "type": "text", "format": "text", "value": "Some text to generate an embedding" } }, { "content": { "type": "image", "format": "base64", "value": "data:image/jpg;base64,..." } } ]-
The input data type for the embedding model. Possible values include:
SEARCHINGESTCLASSIFICATIONCLUSTERING
Not all models support all values. Unsupported values will trigger a validation exception. Accepted values depend on the configured inference service, refer to the relevant service-specific documentation for more info.
The
input_typeparameter specified on the root level of the request body will take precedence over theinput_typeparameter specified intask_settings. -
Task settings for the individual inference request. These settings are specific to the you specified and override the task settings specified when initializing the service.
POST _inference/embedding/my-multimodal-endpoint
{
"input": [
{
"content": {
"type": "image",
"format": "base64",
"value": "data:image/jpg;base64,..."
}
},
{
"content": {
"type": "text",
"value": "Some text to create an embedding"
}
}
]
}
resp = client.inference.embedding(
inference_id="my-multimodal-endpoint",
embedding={
"input": [
{
"content": {
"type": "image",
"format": "base64",
"value": "data:image/jpg;base64,..."
}
},
{
"content": {
"type": "text",
"value": "Some text to create an embedding"
}
}
]
},
)
const response = await client.inference.embedding({
inference_id: "my-multimodal-endpoint",
embedding: {
input: [
{
content: {
type: "image",
format: "base64",
value: "data:image/jpg;base64,...",
},
},
{
content: {
type: "text",
value: "Some text to create an embedding",
},
},
],
},
});
response = client.inference.embedding(
inference_id: "my-multimodal-endpoint",
body: {
"input": [
{
"content": {
"type": "image",
"format": "base64",
"value": "data:image/jpg;base64,..."
}
},
{
"content": {
"type": "text",
"value": "Some text to create an embedding"
}
}
]
}
)
$resp = $client->inference()->embedding([
"inference_id" => "my-multimodal-endpoint",
"body" => [
"input" => array(
[
"content" => [
"type" => "image",
"format" => "base64",
"value" => "data:image/jpg;base64,...",
],
],
[
"content" => [
"type" => "text",
"value" => "Some text to create an embedding",
],
],
),
],
]);
curl -X POST -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"input":[{"content":{"type":"image","format":"base64","value":"data:image/jpg;base64,..."}},{"content":{"type":"text","value":"Some text to create an embedding"}}]}' "$ELASTICSEARCH_URL/_inference/embedding/my-multimodal-endpoint"
{
"input": [
{
"content": {
"type": "image",
"format": "base64",
"value": "data:image/jpg;base64,..."
}
},
{
"content": {
"type": "text",
"value": "Some text to create an embedding"
}
}
]
}
{
"input": ["The first text", "The second text"]
}
{
"embeddings": [
{
"embedding": [
-0.0189209,
-0.04174805,
0.00854492,
0.01556396,
0.01928711,
-0.00616455,
-0.00460815,
0.01477051,
-0.00656128,
0.05419922
]
},
{
"embedding": [
-0.01379395,
-0.02368164,
0.01068115,
0.0279541,
0.01043701,
-7.7057E-4,
0.04150391,
0.00836182,
-0.01135254,
0.0246582
]
}
]
}
{
"embeddings": [
{
"embedding": [
0.00854492,
-0.00616455,
-0.0189209,
0.01556396,
-0.00460815,
0.01477051,
-0.04174805,
0.01928711,
-0.00656128,
0.05419922
]
},
{
"embedding": [
-0.01135254,
0.0279541,
-0.02368164,
0.01068115,
0.01043701,
0.04150391,
0.00836182,
-7.7057E-4,
-0.01379395,
0.0246582
]
}
]
}