Query parameters
-
allow_no_match
boolean Specifies what to do when the request:
- Contains wildcard expressions and there are no models that match.
- Contains the _all string or no identifiers and there are no matches.
- Contains wildcard expressions and there are only partial matches.
If true, it returns an empty array when there are no matches and the subset of results when there are partial matches.
-
decompress_definition
boolean Specifies whether the included model definition should be returned as a JSON map (true) or in a custom compressed format (false).
-
exclude_generated
boolean Indicates if certain fields should be removed from the configuration on retrieval. This allows the configuration to be in an acceptable format to be retrieved and then added to another cluster.
-
from
number Skips the specified number of models.
-
include
string A comma delimited string of optional fields to include in the response body.
Values are
definition
,feature_importance_baseline
,hyperparameters
,total_feature_importance
, ordefinition_status
. -
size
number Specifies the maximum number of models to obtain.
-
tags
string | array[string] A comma delimited string of tags. A trained model can have many tags, or none. When supplied, only trained models that contain all the supplied tags are returned.
Responses
-
200 application/json
Hide response attributes Show response attributes object
-
count
number Required -
trained_model_configs
array[object] Required An array of trained model resources, which are sorted by the model_id value in ascending order.
Hide trained_model_configs attributes Show trained_model_configs attributes object
-
model_id
string Required -
model_type
string Values are
tree_ensemble
,lang_ident
, orpytorch
. -
tags
array[string] Required A comma delimited string of tags. A trained model can have many tags, or none.
-
version
string -
compressed_definition
string -
created_by
string Information on the creator of the trained model.
create_time
string | number A date and time, either as a string whose format can depend on the context (defaulting to ISO 8601), or a number of milliseconds since the Epoch. Elasticsearch accepts both as input, but will generally output a string representation.
One of: Time unit for milliseconds
-
default_field_map
object Any field map described in the inference configuration takes precedence.
Hide default_field_map attribute Show default_field_map attribute object
-
*
string Additional properties
-
-
description
string The free-text description of the trained model.
-
The estimated heap usage in bytes to keep the trained model in memory.
-
estimated_operations
number The estimated number of operations to use the trained model.
-
fully_defined
boolean True if the full model definition is present.
-
inference_config
object Inference configuration provided when storing the model config
Hide inference_config attributes Show inference_config attributes object
-
regression
object Hide regression attributes Show regression attributes object
-
results_field
string Path to field or array of paths. Some API's support wildcards in the path to select multiple fields.
-
Specifies the maximum number of feature importance values per document.
-
-
classification
object Hide classification attributes Show classification attributes object
-
num_top_classes
number Specifies the number of top class predictions to return. Defaults to 0.
-
Specifies the maximum number of feature importance values per document.
-
prediction_field_type
string Specifies the type of the predicted field to write. Acceptable values are: string, number, boolean. When boolean is provided 1.0 is transformed to true and 0.0 to false.
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
top_classes_results_field
string Specifies the field to which the top classes are written. Defaults to top_classes.
-
-
text_classification
object Hide text_classification attributes Show text_classification attributes object
-
num_top_classes
number Specifies the number of top class predictions to return. Defaults to 0.
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
classification_labels
array[string] Classification labels to apply other than the stored labels. Must have the same deminsions as the default configured labels
-
-
zero_shot_classification
object Hide zero_shot_classification attributes Show zero_shot_classification attributes object
-
tokenization
object Tokenization options stored in inference configuration
-
hypothesis_template
string Hypothesis template used when tokenizing labels for prediction
-
classification_labels
array[string] Required The zero shot classification labels indicating entailment, neutral, and contradiction Must contain exactly and only entailment, neutral, and contradiction
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
multi_label
boolean Indicates if more than one true label exists.
-
labels
array[string] The labels to predict.
-
-
fill_mask
object Hide fill_mask attributes Show fill_mask attributes object
-
mask_token
string The string/token which will be removed from incoming documents and replaced with the inference prediction(s). In a response, this field contains the mask token for the specified model/tokenizer. Each model and tokenizer has a predefined mask token which cannot be changed. Thus, it is recommended not to set this value in requests. However, if this field is present in a request, its value must match the predefined value for that model/tokenizer, otherwise the request will fail.
-
num_top_classes
number Specifies the number of top class predictions to return. Defaults to 0.
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
vocabulary
object Required Hide vocabulary attribute Show vocabulary attribute object
-
index
string Required
-
-
-
ner
object Hide ner attributes Show ner attributes object
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
classification_labels
array[string] The token classification labels. Must be IOB formatted tags
-
vocabulary
object Hide vocabulary attribute Show vocabulary attribute object
-
index
string Required
-
-
-
pass_through
object Hide pass_through attributes Show pass_through attributes object
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
vocabulary
object Hide vocabulary attribute Show vocabulary attribute object
-
index
string Required
-
-
-
text_embedding
object Hide text_embedding attributes Show text_embedding attributes object
-
embedding_size
number The number of dimensions in the embedding output
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
vocabulary
object Required Hide vocabulary attribute Show vocabulary attribute object
-
index
string Required
-
-
-
text_expansion
object Hide text_expansion attributes Show text_expansion attributes object
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
vocabulary
object Required Hide vocabulary attribute Show vocabulary attribute object
-
index
string Required
-
-
-
question_answering
object Hide question_answering attributes Show question_answering attributes object
-
num_top_classes
number Specifies the number of top class predictions to return. Defaults to 0.
-
tokenization
object Tokenization options stored in inference configuration
-
results_field
string The field that is added to incoming documents to contain the inference prediction. Defaults to predicted_value.
-
max_answer_length
number The maximum answer length to consider
-
-
-
input
object Required Hide input attribute Show input attribute object
-
field_names
array[string] Required An array of input field names for the model.
-
-
license_level
string The license level of the trained model.
-
metadata
object Hide metadata attributes Show metadata attributes object
-
model_aliases
array[string] -
feature_importance_baseline
object An object that contains the baseline for feature importance values. For regression analysis, it is a single value. For classification analysis, there is a value for each class.
Hide feature_importance_baseline attribute Show feature_importance_baseline attribute object
-
*
string Additional properties
-
-
hyperparameters
array[object] List of the available hyperparameters optimized during the fine_parameter_tuning phase as well as specified by the user.
Hide hyperparameters attributes Show hyperparameters attributes object
-
absolute_importance
number A positive number showing how much the parameter influences the variation of the loss function. For hyperparameters with values that are not specified by the user but tuned during hyperparameter optimization.
-
name
string Required -
relative_importance
number A number between 0 and 1 showing the proportion of influence on the variation of the loss function among all tuned hyperparameters. For hyperparameters with values that are not specified by the user but tuned during hyperparameter optimization.
-
supplied
boolean Required Indicates if the hyperparameter is specified by the user (true) or optimized (false).
-
value
number Required The value of the hyperparameter, either optimized or specified by the user.
-
-
total_feature_importance
array[object] An array of the total feature importance for each feature used from the training data set. This array of objects is returned if data frame analytics trained the model and the request includes total_feature_importance in the include request parameter.
Hide total_feature_importance attributes Show total_feature_importance attributes object
-
feature_name
string Required -
importance
array[object] Required A collection of feature importance statistics related to the training data set for this particular feature.
-
classes
array[object] Required If the trained model is a classification model, feature importance statistics are gathered per target class value.
-
-
model_size_bytes
number | string -
model_package
object Hide model_package attributes Show model_package attributes object
-
create_time
number Time unit for milliseconds
-
description
string -
inference_config
object Hide inference_config attribute Show inference_config attribute object
-
*
object Additional properties
-
-
metadata
object Hide metadata attribute Show metadata attribute object
-
*
object Additional properties
-
-
minimum_version
string -
model_repository
string -
model_type
string -
packaged_model_id
string Required -
platform_architecture
string -
prefix_strings
object size
number | string -
sha256
string -
tags
array[string] -
vocabulary_file
string
-
-
location
object -
prefix_strings
object
-
-
curl \
--request GET 'http://api.example.com/_ml/trained_models' \
--header "Authorization: $API_KEY"