Evaluate data frame analytics
Added in 7.3.0
The API packages together commonly used evaluation metrics for various types of machine learning features. This has been designed for use on indexes created by data frame analytics. Evaluation requires both a ground truth field and an analytics result field to be present.
Body
Required
-
evaluation
object Required -
index
string Required -
query
object An Elasticsearch Query DSL (Domain Specific Language) object that defines a query.
POST
/_ml/data_frame/_evaluate
curl \
--request POST http://api.example.com/_ml/data_frame/_evaluate \
--header "Authorization: $API_KEY" \
--header "Content-Type: application/json" \
--data '{"evaluation":{"classification":{"actual_field":"string","predicted_field":"string","top_classes_field":"string","":{"auc_roc":{"class_name":"string","include_curve":true},"precision":{"additionalProperty1":{},"additionalProperty2":{}},"recall":{"additionalProperty1":{},"additionalProperty2":{}},"accuracy":{"additionalProperty1":{},"additionalProperty2":{}},"multiclass_confusion_matrix":{"additionalProperty1":{},"additionalProperty2":{}}}},"outlier_detection":{"actual_field":"string","predicted_probability_field":"string","":{"auc_roc":{"class_name":"string","include_curve":true},"precision":{"additionalProperty1":{},"additionalProperty2":{}},"recall":{"additionalProperty1":{},"additionalProperty2":{}},"confusion_matrix":{"additionalProperty1":{},"additionalProperty2":{}}}},"regression":{"actual_field":"string","predicted_field":"string","metrics":{"mse":{"additionalProperty1":{},"additionalProperty2":{}},"msle":{"offset":42.0},"huber":{"delta":42.0},"r_squared":{"additionalProperty1":{},"additionalProperty2":{}}}}},"index":"string","query":{}}'
Request examples
{
"evaluation": {
"classification": {
"actual_field": "string",
"predicted_field": "string",
"top_classes_field": "string",
"": {
"auc_roc": {
"class_name": "string",
"include_curve": true
},
"precision": {
"additionalProperty1": {},
"additionalProperty2": {}
},
"recall": {
"additionalProperty1": {},
"additionalProperty2": {}
},
"accuracy": {
"additionalProperty1": {},
"additionalProperty2": {}
},
"multiclass_confusion_matrix": {
"additionalProperty1": {},
"additionalProperty2": {}
}
}
},
"outlier_detection": {
"actual_field": "string",
"predicted_probability_field": "string",
"": {
"auc_roc": {
"class_name": "string",
"include_curve": true
},
"precision": {
"additionalProperty1": {},
"additionalProperty2": {}
},
"recall": {
"additionalProperty1": {},
"additionalProperty2": {}
},
"confusion_matrix": {
"additionalProperty1": {},
"additionalProperty2": {}
}
}
},
"regression": {
"actual_field": "string",
"predicted_field": "string",
"metrics": {
"mse": {
"additionalProperty1": {},
"additionalProperty2": {}
},
"msle": {
"offset": 42.0
},
"huber": {
"delta": 42.0
},
"r_squared": {
"additionalProperty1": {},
"additionalProperty2": {}
}
}
}
},
"index": "string",
"query": {}
}
Response examples (200)
{
"classification": {
"": {
"value": 42.0,
"curve": [
{
"tpr": 42.0,
"fpr": 42.0,
"threshold": 42.0
}
]
},
"accuracy": {
"classes": [
{
"value": 42.0,
"class_name": "string"
}
],
"overall_accuracy": 42.0
},
"multiclass_confusion_matrix": {
"confusion_matrix": [
{
"actual_class": "string",
"actual_class_doc_count": 42.0,
"predicted_classes": [
{}
],
"other_predicted_class_doc_count": 42.0
}
],
"other_actual_class_count": 42.0
},
"precision": {
"classes": [
{
"value": 42.0,
"class_name": "string"
}
],
"avg_precision": 42.0
},
"recall": {
"classes": [
{
"value": 42.0,
"class_name": "string"
}
],
"avg_recall": 42.0
}
},
"outlier_detection": {
"": {
"value": 42.0,
"curve": [
{
"tpr": 42.0,
"fpr": 42.0,
"threshold": 42.0
}
]
},
"precision": {
"additionalProperty1": 42.0,
"additionalProperty2": 42.0
},
"recall": {
"additionalProperty1": 42.0,
"additionalProperty2": 42.0
},
"confusion_matrix": {
"additionalProperty1": {
"tp": 42.0,
"fp": 42.0,
"tn": 42.0,
"fn": 42.0
},
"additionalProperty2": {
"tp": 42.0,
"fp": 42.0,
"tn": 42.0,
"fn": 42.0
}
}
},
"regression": {
"huber": {
"value": 42.0
},
"mse": {
"value": 42.0
},
"msle": {
"value": 42.0
},
"r_squared": {
"value": 42.0
}
}
}