Create an Google AI Studio inference endpoint Generally available; Added in 8.15.0

PUT /_inference/{task_type}/{googleaistudio_inference_id}

Create an inference endpoint to perform an inference task with the googleaistudio service.

Required authorization

  • Cluster privileges: manage_inference

Path parameters

  • task_type string

    The type of the inference task that the model will perform.

    Values are completion or text_embedding.

  • googleaistudio_inference_id string Required

    The unique identifier of the inference endpoint.

Query parameters

  • timeout string

    Specifies the amount of time to wait for the inference endpoint to be created.

    Values are -1 or 0.

application/json

Body

  • chunking_settings object

    The chunking configuration object.

    Hide chunking_settings attributes Show chunking_settings attributes object
    • max_chunk_size number

      The maximum size of a chunk in words. This value cannot be higher than 300 or lower than 20 (for sentence strategy) or 10 (for word strategy).

      Default value is 250.

    • overlap number

      The number of overlapping words for chunks. It is applicable only to a word chunking strategy. This value cannot be higher than half the max_chunk_size value.

      Default value is 100.

    • sentence_overlap number

      The number of overlapping sentences for chunks. It is applicable only for a sentence chunking strategy. It can be either 1 or 0.

      Default value is 1.

    • strategy string

      The chunking strategy: sentence or word.

      Default value is sentence.

  • service string Required

    The type of service supported for the specified task type. In this case, googleaistudio.

    Value is googleaistudio.

  • service_settings object Required

    Settings used to install the inference model. These settings are specific to the googleaistudio service.

    Hide service_settings attributes Show service_settings attributes object
    • api_key string Required

      A valid API key of your Google Gemini account.

    • model_id string Required

      The name of the model to use for the inference task. Refer to the Google documentation for the list of supported models.

      External documentation
    • rate_limit object

      This setting helps to minimize the number of rate limit errors returned from Google AI Studio. By default, the googleaistudio service sets the number of requests allowed per minute to 360.

      Hide rate_limit attribute Show rate_limit attribute object
      • requests_per_minute number

        The number of requests allowed per minute.

Responses

  • 200 application/json
    Hide response attributes Show response attributes object
    • chunking_settings object

      Chunking configuration object

      Hide chunking_settings attributes Show chunking_settings attributes object
      • max_chunk_size number

        The maximum size of a chunk in words. This value cannot be higher than 300 or lower than 20 (for sentence strategy) or 10 (for word strategy).

        Default value is 250.

      • overlap number

        The number of overlapping words for chunks. It is applicable only to a word chunking strategy. This value cannot be higher than half the max_chunk_size value.

        Default value is 100.

      • sentence_overlap number

        The number of overlapping sentences for chunks. It is applicable only for a sentence chunking strategy. It can be either 1 or 0.

        Default value is 1.

      • strategy string

        The chunking strategy: sentence or word.

        Default value is sentence.

    • service string Required

      The service type

    • service_settings object Required

      Settings specific to the service

    • task_settings object

      Task settings specific to the service and task type

    • inference_id string Required

      The inference Id

    • task_type string Required

      The task type

      Values are text_embedding or completion.

PUT /_inference/{task_type}/{googleaistudio_inference_id}
PUT _inference/completion/google_ai_studio_completion
{
    "service": "googleaistudio",
    "service_settings": {
        "api_key": "api-key",
        "model_id": "model-id"
    }
}
resp = client.inference.put(
    task_type="completion",
    inference_id="google_ai_studio_completion",
    inference_config={
        "service": "googleaistudio",
        "service_settings": {
            "api_key": "api-key",
            "model_id": "model-id"
        }
    },
)
const response = await client.inference.put({
  task_type: "completion",
  inference_id: "google_ai_studio_completion",
  inference_config: {
    service: "googleaistudio",
    service_settings: {
      api_key: "api-key",
      model_id: "model-id",
    },
  },
});
response = client.inference.put(
  task_type: "completion",
  inference_id: "google_ai_studio_completion",
  body: {
    "service": "googleaistudio",
    "service_settings": {
      "api_key": "api-key",
      "model_id": "model-id"
    }
  }
)
$resp = $client->inference()->put([
    "task_type" => "completion",
    "inference_id" => "google_ai_studio_completion",
    "body" => [
        "service" => "googleaistudio",
        "service_settings" => [
            "api_key" => "api-key",
            "model_id" => "model-id",
        ],
    ],
]);
curl -X PUT -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"service":"googleaistudio","service_settings":{"api_key":"api-key","model_id":"model-id"}}' "$ELASTICSEARCH_URL/_inference/completion/google_ai_studio_completion"
client.inference().put(p -> p
    .inferenceId("google_ai_studio_completion")
    .taskType(TaskType.Completion)
    .inferenceConfig(i -> i
        .service("googleaistudio")
        .serviceSettings(JsonData.fromJson("{\"api_key\":\"api-key\",\"model_id\":\"model-id\"}"))
    )
);
Request example
Run `PUT _inference/completion/google_ai_studio_completion` to create an inference endpoint to perform a `completion` task type.
{
    "service": "googleaistudio",
    "service_settings": {
        "api_key": "api-key",
        "model_id": "model-id"
    }
}