Improving Search with Text Analysis


Course Summary

Adding adequate text analysis to your search application is just the beginning to creating a great search experience. Using advanced techniques can greatly increase the quality of search results and turn a good search engine into a great one. This instructor-led course starts with an introduction about different analysis techniques, and how to apply them to different business needs. You will learn how to configure analyzers to deal with morphological variations, how to search in compound words, and how to deal with fuzzy and phrase searches without using expensive queries. You’ll also learn the difference between stemming and lemmatization, as well as the different characteristics of some of the stemming algorithms. After completing this module, you will be prepared to use ngrams, edge-ngrams, shingles, and some other specialized analyzers, tokenizers, and token filters in your Elasticsearch solution.

  • Introduction to Text Analysis
  • Text to Words to Tokens
  • Morphological Variations
  • Handling Fuzziness, Partial Matches, and Misspellings
  • N-Grams and Edge N-Grams

Course Details

This course is a module of the Elasticsearch Advanced Search specialization. Find out how our focused Training Specializations can help you with your use case.

Software Developers and Engineers, Data Architects, DevOps

Virtual - 1 Day | 2-3 hours

Virtual Schedule

We recommend taking the following foundational courses (or having equivalent knowledge):

  • Stable internet connection
  • Mac, Linux, or Windows
  • Latest version of Chrome or Firefox (other browsers not supported)
  • Disable any ad blockers and restart your browser before class

Upcoming Classes — Improving Search with Text Analysis