Sentiment Analysis and Brand Monitoring

Course Summary

Thanks to machine learning, anomaly detection has never been easier. This instructor-led course will show you how to leverage the machine learning capabilities of the Elastic Stack to find anomalous data. Using Twitter data in a series of labs, you will learn to ingest and enrich data via an external API, and then analyze social network data with the Elastic Stack. Then, using machine learning, you will learn how to quickly detect anomalous behavior, such as spam tweets. After completing this course, you will be able to start using machine learning in your Elasticsearch clusters.

  • Solving Problems with Machine Learning
  • Ingesting Twitter Data
  • Sentiment Analysis with Python and Logstash
  • Monitoring APIs with Kibana
  • Anomaly Detection with Machine Learning

Course Details

This course is a module of the Data Science specialization. Find out how our focused Training Specializations can help you with your use case.

Data Scientists, Data Architects, Data Engineers

Virtual Classroom - 1 Day | 2-3 hours

Virtual Classroom Schedule

  • Stable internet connection
  • Mac, Linux, or Windows
  • Latest version of Chrome or Firefox (Safari is not 100% supported)
  • Due to virtual classroom JavaScript requirements, we recommend that you disable any ad-blockers and restart your browser before class.

Upcoming Classes — Sentiment Analysis and Brand Monitoring

It was awesome. Both instructors are great speakers. They have a wide and deep knowledge about the topic, and they know how to pass it on. They are infecting with their enthusiasm.

Mariusz Kuskowski | Allegro Group