Improving information retrieval in the Elastic Stack

This series explores steps to improve search relevance, benchmarking passage retrieval, ELSER, and hybrid retrieval.

部分 1

Improving information retrieval in the Elastic Stack: Steps to improve search relevance

2023年7月13日

Improving information retrieval in the Elastic Stack: Steps to improve search relevance

In this first blog post, we will list and explain the differences between the primary building blocks available in the Elastic Stack to do information retrieval.

部分 2

Improving information retrieval in the Elastic Stack: Benchmarking passage retrieval

2023年7月13日

Improving information retrieval in the Elastic Stack: Benchmarking passage retrieval

In this blog post, we'll examine benchmark solutions to compare retrieval methods. We use a collection of data sets to benchmark BM25 against two dense models and illustrate the potential gain using fine-tuning strategies with one of those models.

部分 3

Improving information retrieval in the Elastic Stack: Introducing Elastic Learned Sparse Encoder, our new retrieval model

2023年6月21日

Improving information retrieval in the Elastic Stack: Introducing Elastic Learned Sparse Encoder, our new retrieval model

Learn about the Elastic Learned Sparse Encoder (ELSER), its retrieval performance, architecture, and training process.

部分 4

Improving information retrieval in the Elastic Stack: Hybrid retrieval

2023年7月20日

Improving information retrieval in the Elastic Stack: Hybrid retrieval

In this blog we introduce hybrid retrieval and explore two concrete implementations in Elasticsearch. We explore improving Elastic Learned Sparse Encoder’s performance by combining it with BM25 using Reciprocal Rank Fusion and Weighted Sum of Scores.

准备好打造最先进的搜索体验了吗?

足够先进的搜索不是一个人的努力就能实现的。Elasticsearch 由数据科学家、ML 操作员、工程师以及更多和您一样对搜索充满热情的人提供支持。让我们联系起来,共同打造神奇的搜索体验,让您获得想要的结果。

亲自试用