Relevance workbench
In this workbench, you can compare our Elastic Learned Sparse Encoder model (with or without RRF) and traditional textual search using BM25.
Start comparing different hybrid search techniques using TMDB's movies dataset as sample data. Or fork the code and ingest your own data to try it on your own!
Try these queries to get started:
- "The matrix"
- "Movies in Space"
- "Superhero animated movies"
Notice how some queries work great for both search techniques. For example, 'The Matrix' performs well with both models. However, for queries like "Superhero animated movies", the Elastic Learned Sparse Encoder model outperforms BM25. This can be attributed to the semantic search capabilities of the model.
Explore similar demos
検索
2分でわかるElasticsearch
このデモでは、Elasticsearchが本番環境対応の生成AIおよびAI主導の検索アプリケーションをどのように実現するかを紹介します。データのインデキシングや埋め込みからRetrieval-Augmented Generation(RAG)を活用した大規模言語モデルのグラウンディングまで対応します。開発者が生データから迅速に完全な機能を備えた生成AI検索エクスペリエンスを構築する方法をご覧ください。