IMPORTANT: No additional bug fixes or documentation updates
will be released for this version. For the latest information, see the
current release documentation.
Average bucket aggregation
edit
IMPORTANT: This documentation is no longer updated. Refer to Elastic's version policy and the latest documentation.
Average bucket aggregation
editA sibling pipeline aggregation which calculates the mean value of a specified metric in a sibling aggregation. The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
Syntax
edit"avg_bucket": {
"buckets_path": "sales_per_month>sales",
"gap_policy": "skip",
"format": "#,##0.00;(#,##0.00)"
}
Parameters
edit-
buckets_path -
(Required, string)
Path to the buckets to average. For syntax, see
buckets_pathSyntax. -
gap_policy -
(Optional, string)
Policy to apply when gaps are found in the data. For valid values, see
Dealing with gaps in the data. Defaults to
skip. -
format -
(Optional, string)
DecimalFormat pattern for the
output value. If specified, the formatted value is returned in the aggregation’s
value_as_stringproperty.
Response body
edit-
value -
(float)
Mean average value for the metric specified in
buckets_path. -
value_as_string -
(string)
Formatted output value for the aggregation. This property is only provided if
a
formatis specified in the request.
Example
editThe following avg_monthly_sales aggregation uses avg_bucket to calculate
average sales per month:
resp = client.search(
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"avg_monthly_sales": {
"avg_bucket": {
"buckets_path": "sales_per_month>sales",
"gap_policy": "skip",
"format": "#,##0.00;(#,##0.00)"
}
}
},
)
print(resp)
const response = await client.search({
size: 0,
aggs: {
sales_per_month: {
date_histogram: {
field: "date",
calendar_interval: "month",
},
aggs: {
sales: {
sum: {
field: "price",
},
},
},
},
avg_monthly_sales: {
avg_bucket: {
buckets_path: "sales_per_month>sales",
gap_policy: "skip",
format: "#,##0.00;(#,##0.00)",
},
},
},
});
console.log(response);
POST _search
{
"size": 0,
"aggs": {
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"avg_monthly_sales": {
// tag::avg-bucket-agg-syntax[]
"avg_bucket": {
"buckets_path": "sales_per_month>sales",
"gap_policy": "skip",
"format": "#,##0.00;(#,##0.00)"
}
// end::avg-bucket-agg-syntax[]
}
}
}
|
Start of the |
|
|
End of the |
The request returns the following response:
{
"took": 11,
"timed_out": false,
"_shards": ...,
"hits": ...,
"aggregations": {
"sales_per_month": {
"buckets": [
{
"key_as_string": "2015/01/01 00:00:00",
"key": 1420070400000,
"doc_count": 3,
"sales": {
"value": 550.0
}
},
{
"key_as_string": "2015/02/01 00:00:00",
"key": 1422748800000,
"doc_count": 2,
"sales": {
"value": 60.0
}
},
{
"key_as_string": "2015/03/01 00:00:00",
"key": 1425168000000,
"doc_count": 2,
"sales": {
"value": 375.0
}
}
]
},
"avg_monthly_sales": {
"value": 328.33333333333333,
"value_as_string": "328.33"
}
}
}