Google AI Studio inference service
editGoogle AI Studio inference service
editCreates an inference endpoint to perform an inference task with the googleaistudio service.
Request
editPUT /_inference/<task_type>/<inference_id>
Path parameters
edit-
<inference_id> - (Required, string) The unique identifier of the inference endpoint.
-
<task_type> -
(Required, string) The type of the inference task that the model will perform.
Available task types:
-
completion, -
text_embedding.
-
Request body
edit-
service -
(Required, string)
The type of service supported for the specified task type. In this case,
googleaistudio. -
service_settings -
(Required, object) Settings used to install the inference model.
These settings are specific to the
googleaistudioservice.-
api_key - (Required, string) A valid API key for the Google Gemini API.
-
model_id - (Required, string) The name of the model to use for the inference task. You can find the supported models at Gemini API models.
-
rate_limit -
(Optional, object) By default, the
googleaistudioservice sets the number of requests allowed per minute to360. This helps to minimize the number of rate limit errors returned from Google AI Studio. To modify this, set therequests_per_minutesetting of this object in your service settings:"rate_limit": { "requests_per_minute": <<number_of_requests>> }
-
Google AI Studio service example
editThe following example shows how to create an inference endpoint called
google_ai_studio_completion to perform a completion task type.
resp = client.inference.put(
task_type="completion",
inference_id="google_ai_studio_completion",
inference_config={
"service": "googleaistudio",
"service_settings": {
"api_key": "<api_key>",
"model_id": "<model_id>"
}
},
)
print(resp)
const response = await client.inference.put({
task_type: "completion",
inference_id: "google_ai_studio_completion",
inference_config: {
service: "googleaistudio",
service_settings: {
api_key: "<api_key>",
model_id: "<model_id>",
},
},
});
console.log(response);
PUT _inference/completion/google_ai_studio_completion
{
"service": "googleaistudio",
"service_settings": {
"api_key": "<api_key>",
"model_id": "<model_id>"
}
}