
Distributed Tracing,
OpenTracing & Elastic APM

Adam Quan | Solutions Architect

April 16th, 2019

Adam Quan
Solutions Architect, Elastic Certified Engineer

Elastic

Housekeeping & Logistics

• Recording will be available following the webinar

• Chat via IRC #elastic-webinar

◦ #elastic-webinar @ Freenode

◦ Click "Join the Chat" link, create an IRC account

• Please select high resolution in the YouTube video player

Elastic Stack
Store, Search, & AnalyzeElasticsearch

Visualize & ManageKibana

IngestBeats Logstash

55

Technology differentiation

SCALE

Distributed by design

SPEED

Find matches in milliseconds

RELEVANCE

Get highly relevant results

Elastic Stack
Store, Search, & AnalyzeElasticsearch

Visualize & ManageKibana

IngestBeats Logstash

Metrics

Logging

APM

Site
Search

Application
Search

Business
Analytics

Enterprise
Search

Security
Analytics

Future Solutions

Elastic Stack
Store, Search, & AnalyzeElasticsearch

Visualize & ManageKibana

IngestBeats Logstash

Metrics

Logging

APM

Site
Search

Application
Search

Business
Analytics

Enterprise
Search

Security
Analytics

Future Solutions

SaaS

Elastic Cloud

Self Managed

Elastic Cloud
Enterprise Standalone

Deployment

Agenda

● Microservices

● Distributed Tracing

● OpenTracing

● Elastic APM & Distributed Tracing

● Demo

● Q&A

9

Microservices Can Be Very Complex

Netflix Twitter

10

Why Distributed Tracing?

Distributed tracing provides a solution for describing and analyzing the

cross-process transactions.

• Latency tracking
‒ Where & why things are slow?

‒ Slow code, slow network?

• Root cause analysis
‒ Where & why did it fail?

‒ Bad code?

‒ Network failure?

11

The 3rd Pillar of Observability

12

Distributed Tracers

• Dapper (Google) - 2010.
‒ Google’s production distributed systems tracing infrastructure
‒ A self-contained tracing tool evolved into a monitoring platform

• Zipkin (Twitter)
‒ Developed by Twitter based on the Google Dapper paper
‒ Written in Java
‒ Uses Cassandra or Elasticsearch as a scalable backend, MySQL too

• Jaeger (Uber)
‒ Newer project from Uber, CNCF adopted as an Incubating project
‒ Written in Golang
‒ Supports Cassandra and Elasticsearch as scalable storage backends

• Appdash
• Others ...

A fast growing ecosystem

13

Challenges for Application Developers

• Add the tracer in the application code

• Which one to use?

• What if I need to change my tracer?

• No, I don’t want to change my entire source code

• What do I do with shared libraries?

• What if my third party services use a different tracer?

14

We Need Distributed Tracing Standardization

• Tracing API
‒ The OpenTracing API

• Wire Protocol
‒ What gets sent alongside

application data in RPC requests
‒ Distributed Context Propagation
‒ Eg. The trace-context HTTP

headers, AMQP message headers
• Data Definition & Format

‒ What gets sent asynchronously to
the analysis system

• Analysis System
‒ A service for extracting insights from

trace data

Four Components

15

Enter OpenTracing

• Abstraction from different tracers

• Vendor-neutral APIs and instrumentation

• Switching between tracers

• OpenTracing and OpenCensus are merging

‒ Make observability a built-in feature in every modern application

‒ Not just “tracing” - merged project includes data sources beyond distributed

transaction traces, like metrics, traces and logs

Emerging Industry Standard for Distributed Tracing

16

OpenTracing
A Mental Model

• Distributed Tracing is a process of collecting end-to-end transaction
graphs in near real time

• A trace represents the entire journey of a request
• A span represents single operation call
• As a request is flowing from one microservice to another, tracers add

logic to create unique trace Id, span Id

17

How Does It All Fit In?

18

• The only thing standardized by OpenTracing is the programmatic Tracing API
‒ io.opentracing.Span, io.opentracing.Tracer

• Wire Protocol is not standardized yet.
‒ For example, HTTP headers for context propagation:

‒ Jaeger: uber-trace-id: 118c6c15301b9b3b3:56e66177e6e55a91:18c6c15301b9b3b3:1
‒ Elastic: elastic-apm-traceparent: 00-f109f092a7d869fb4615784bacefcfd7-5bf936f4fcde3af0-01

‒ HTTP header name is different & ID format is different
‒ Trace-Context is a W3C working group for standardizing the HTTP headers for distributed

tracing https://github.com/w3c/distributed-tracing
‒ OpenTracing will most likely adopt and require Trace-Context for distributed tracing HTTP

headers as part of its specification
• Data Protocol is not standardized

‒ Zipkin, Jaeger and Elastic APM use different data format for Span data and others

The Unfortunate Facts - Today
No Runtime Compatibility among Tracers, but there is hope

https://github.com/w3c/distributed-tracing

19

Elastic & Distributed Tracing
Elastic APM is OpenTracing Compliant and Supports Distributed Tracing

20

Elastic OpenTracing Bridge

<dependency>

 <groupId>co.elastic.apm</groupId>

 <artifactId>apm-opentracing</artifactId>

 <version>${elastic-apm.version}</version>

</dependency>

import co.elastic.apm.opentracing.ElasticApmTracer;

import io.opentracing.Tracer

Tracer tracer = new ElasticApmTracer();

See: https://www.elastic.co/guide/en/apm/agent/java/current/opentracing-bridge.html

Reuse Existing Instrumentations

Allows you to replace other
OpenTracing-compliant tracers like Jaeger
without having to change the rest of the
tracing code.

https://www.elastic.co/guide/en/apm/agent/java/current/opentracing-bridge.html

21

Elastic & Distributed Tracing

• Zipkin & Jaeger
‒ Basic tracing information

‒ Dependency diagram

‒ Out-of-the-box integration with Elasticsearch

• Elasticsearch
‒ Rich trace analysis

‒ Long-term trace data storage

‒ Correlation with logs & metrics

Integrating Zipkin, Jaeger with Elastic

22

Full stack monitoring in a single place
Adding end-user experience and application-level monitoring to the Elastic Stack

2
3

Kibana

Beats

Logstash
Elasticsearch

Logs
Metrics
Packets
...

Datastore JMX

Where APM fits in the Elastic Stack

APM ServerAPM Agents

OSS OSS

Dashboards -
OSS

App - Basic (free)

2424

Supported Languages & Frameworks

25
25

RUM
● Measures actual

end-user experience

● See where the browser
spends its time

● Similar waterfall view

● Annotations at key DOM
events

26
26

Alerting
Integration

● Daily or Interval based

● Configurable Threshold

● Slack or email
notification

27
27

ML Integration

● Calculate anomaly
scores on high response
times

● Graph annotations when
score is over 75

28

Import Dashboards or Make Custom Visualizations
Just another index

29

Demo Time

30

Application Architecture

● React frontend
● Node.js Express proxy
● Java backend
● MySQL data store
● Python for address

lookup
● Elasticsearch backend
● Elastic Cloud:

○ ES
○ Kibana
○ APM

31

Key Takeaways

• Elastic APM is OpenTracing compliant

• Elastic OpenTracing bridge allows instrumentation reuse

• Elastic Stack is a great scalable long-term storage for other tracers

• Elastic provides rich analytics for tracing data Elastic or not

• Elastic is a great platform for all three pillars of observability - logging,

metrics & tracing

Why Elastic APM?

32

Resources

Elastic APM: https://www.elastic.co/solutions/apm

Blog: Distributed Tracing, OpenTracing & Elastic APM

Blog: A Sip of Elastic RUM (Real User Monitoring)

APM Forum: https://discuss.elastic.co/c/apm

https://www.elastic.co/solutions/apm
https://www.elastic.co/blog/distributed-tracing-opentracing-and-elastic-apm
https://www.elastic.co/blog/performing-real-user-monitoring-rum-with-elastic-apm
https://discuss.elastic.co/c/apm

Thank You

● Web : www.elastic.co
● Demos: demo.elastic.co
● Products : https://www.elastic.co/products
● Forums : https://discuss.elastic.co/
● Community : https://www.elastic.co/community/meetups
● Twitter : @elastic

http://demo.elastic.co

Questions?

