
!1

Michael Heldebrant

November 2018

Using Elasticsearch, Beats and
Elastic APM to monitor your
OpenShift Data

!2

Michael Heldebrant
Solutions Architect

Elastic

!3

Housekeeping & Logistics

• Slides and recording will be available following the webinar
• Chat via IRC #elastic-webinar

‒ #elastic-webinar @ Freenode
‒ Click ”Join the Chat” link, create an IRC account

• Please select high resolution in the YouTube video player

!4

Elastic Stack

Visualize & Manage

Store, Search, & Analyze

Ingest

Kibana

Elasticsearch

Beats Logstash

!5

Metrics

Logging

APM

Site 
Search

Application
Search

Business 
Analytics

Kibana

Elasticsearch

Beats Logstash

Visualize & Manage

Store, Search, & Analyze

Ingest

Enterprise 
Search

Security 
Analytics

Future Solutions

Elastic Stack

!6

Metrics

Logging

APM

Site 
Search

App  
Search

Business 
Analytics

Kibana

Elasticsearch

Beats Logstash

Visualize & Manage

Store, Search, & Analyze

Ingest

Enterprise 
Search

Security 
Analytics

Future Solutions

SaaS

Elastic Cloud

Self Managed

Elastic Cloud 
Enterprise

Standalone
Deployment

Elastic Stack

!7

SaaS

Elastic Cloud

Metrics

Logging

APM

Site 
Search

App  
Search

Business 
Analytics

Kibana

Elasticsearch

Beats Logstash

Self Managed

Visualize & Manage

Store, Search, & Analyze

Ingest

Enterprise 
Search

Security 
Analytics

Future

Deployment

Solutions

Elastic Stack

Elastic Cloud 
Enterprise

Standalone

!8

Agenda

• Three pillars of observability

• OpenShift compared to Kubernetes

• Elastic Beats and OpenShift

• APM tracing

• Demo

!9

Kubernetes webinar

!10

It Comes Down to The Three Pillars of Observability

Twitter:
https://blog.twitter.com/engineering/en_us/a/
2013/observability-at-twitter.html
Peter Bourgon
https://peter.bourgon.org/blog/2017/02/21/
metrics-tracing-and-logging.html

https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html
https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html
https://peter.bourgon.org/blog/2017/02/21/metrics-tracing-and-logging.html
https://peter.bourgon.org/blog/2017/02/21/metrics-tracing-and-logging.html

!11

Elastic at the Center Stage

!12

• Pod to Pod network stack (openvswitch and vxlan)

• Router (based on HAProxy)

• Docker registry

• Source to Image builds (from source code to deployed applications)

• Security Context Controls (privileged containers, selinux)

• OpenShift Web Console

OpenShift adds on to Kubernetes

!13

OpenShift High Level Architecture

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/

!14

OpenShift – bring your own containers

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/

!15

OpenShift – build your own containers via S2I

https://docs.openshift.com/container-platform/3.11/using_images/index.html

!16

Principles of container-based application design

https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper

!17

• Logs: Filebeat collecting logs and sending to ingest pipelines for log analytics

• Health/Metrics: Metricbeat collecting metrics from the infrastructure, applications, and

platform

• Tracing: APM agents instrumenting application code

• Readiness: Heartbeat to monitor uptime and latency from external hosts

• Network: Packetbeat analyzing pod to pod traffic

What is possible today

1 2

!18

• Filebeat as a daemonset on each node for pods (system logs also possible)

• Metricbeat as a daemonset on each node for system and pod metricsets

• Metricbeat as a deployment collecting from kube-state metrics deployment

• Elastic APM agents sending to an apm-server package installed on the OS

• Packetbeat package installed on the OS for pod network traffic monitoring

• Heartbeat package installed on external OS host for service monitoring

• All data sent to Elastic Cloud Elasticsearch Service cluster and Kibana

Technical Details of the demo

!19

High level Steps for Beats running in Openshift

Need a Cluster? – Elastic Cloud Elasticsearch Service 14 day trial

Get the Filebeat manifest, modify as per documentation, oc create, and grant scc to service
account
• https://www.elastic.co/guide/en/beats/filebeat/6.5/running-on-kubernetes.html)
Get the Kube-state-metrics manifest, oc create
Get the Metricbeat manifest, modify as per documentation, oc create, and grant scc to
service account
• https://www.elastic.co/guide/en/beats/metricbeat/6.5/running-on-kubernetes.html

!20

• Filebeat needs to run as a privileged container to mount logs written on node

(hostPath) and read them (User: RunAsAny and selinux: RunAsAny)

• Metricbeat needs to run as a privileged container to attach to the host network

(Allow Host Network) and mount system volumes (hostPath) and read them

(User: RunAsAny and selinux: RunAsAny). Metricbeat needs to use a bearer

token and RBAC for the secured kubelet port for metrics collection.

• The Service accounts for Filebeat and Metricbeat need to be added to the

privileged scc. This is the same access required for other log shippers.

What changes are needed compared to Kubernetes?

oc adm policy add-scc-to-user privileged system:serviceaccount:kube-system:filebeat
oc adm policy add-scc-to-user privileged system:serviceaccount:kube-system:metricbeat

!21

• Filebeat: Lightweight Shipper for Logs

• Filebeat daemon set per node

• Mounts filesystem from node

• Reads log files and adds metadata

• Sends json to ingest pipeline for parsing based on pod annotations

!22

Get multiline (ie stacktrace) support per pod and per container in a pod

!23

Metricbeat: Lightweight Shipper for Metrics

• Metricbeat daemon set per node

• Mounts filesystem from node

• Collects host and process metrics, also can collect Prometheus metrics

• Metricbeat Deployment to collect kube-state-metrics data

!24

Elastic APM: Open Source Application Monitoring

!25

Packetbeat: Lightweight Shipper for Network Data  
On eth0 sees pod to pod traffic as port 4789 UDP (vxlan)

!26

Create a span port via openvswitch

#Create port for sdn network tap
ovs-vsctl add-port br0 tap0 -- set interface tap0 type=internal
#Mirror all traffic to the tap port
ovs-vsctl -- set Bridge br0 mirrors=@m -- --id=@tap0 get Port tap0 -- --
id=@m create Mirror name=mymirror select-all=true output-port=@tap0

packetbeat.yml

Select the network interface to sniff the data. On Linux, you can use the
"any" keyword to sniff on all connected interfaces.
packetbeat.interfaces.device: tap0

!27

Packetbeat now can observe the pod to pod traffic

!28

OpenShift router high level architecture

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/

!29

Send HAProxy logs out via syslog and collect via filebeat

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=127.0.0.1 ROUTER_LOG_LEVEL=debug

filebeat.yml

filebeat.inputs:
- type: syslog
 protocol.udp:
 host: "localhost:514"

!30

HAProxy log analytics in an afternoon

!31

Heartbeat: Lightweight Shipper for Uptime Monitoring

Demonstration

Questions?

Thank You
● Web : www.elastic.co
● Demos: demo.elastic.co
● Products : https://www.elastic.co/products
● Forums : https://discuss.elastic.co/
● Community : https://www.elastic.co/community/meetups
● Twitter : @elastic

Bonus slides

!36

Start with an existing analogous ingest pipeline: apache2

!37

Modify the grok pattern for the HAProxy log format
>>> Feb 6 12:14:14 localhost \ haproxy[14389]: 10.0.1.2:33317 [06/Feb/2009:12:14:14.655] http-in \
static/srv1 10/0/30/69/109 200 2750 - - ---- 1/1/1/1/0 0/0 {1wt.eu} \ {} "GET /index.html HTTP/1.1"

 Field Format Extract from the example above
 1 process_name '[' pid ']:' haproxy[14389]:
 2 client_ip ':' client_port 10.0.1.2:33317
 3 '[' accept_date ']' [06/Feb/2009:12:14:14.655]
 4 frontend_name http-in
 5 backend_name '/' server_name static/srv1
 6 Tq '/' Tw '/' Tc '/' Tr '/' Tt* 10/0/30/69/109
 7 status_code 200
 8 bytes_read* 2750
 9 captured_request_cookie -
 10 captured_response_cookie -
 11 termination_state ----
 12 actconn '/' feconn '/' beconn '/' srv_conn '/' retries* 1/1/1/1/0
 13 srv_queue '/' backend_queue 0/0
 14 '{' captured_request_headers* '}' {haproxy.1wt.eu}
 15 '{' captured_response_headers* '}' {}
 16 '"' http_request '"' "GET /index.html HTTP/1.1"

!38

Grok Debugger – iterate till you parse it

!39

Ingest Pipeline Simulator – test full pipeline

!40

Add a few mappings to the template

!41

Then find out it’s coming as a module in a future version

