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● Single install - deployed with X-Pack
● Data gravity - analyzes data from the same cluster
● Contextual - anomalies and data stored together
● Scalable - jobs distributed across nodes
● Resilient - handles node failure



Machine Learning in the Elastic Stack
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• analysis of time series (e.g. log data)

• help users understanding their data

• modeling of the data in order to detect anomalies, predict future values

• be of operational useful: real-time

Machine Learning in the Elastic Stack
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In a nutshell



• smarter job placement

• automatic job creation

• data visualizer

• population analysis job wizards

• on-demand forecasting

• scheduled events

Machine Learning News
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Big ML upgrade in 6.1 / 6.2



• What basic concepts do I need to know about?

• What is a model? How many are out there?

• From Detection to Projection: Forecasting

ES Machine Learning Guided Tour
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What happens inside the black box



Creating an ML Job from a backstage perspective
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Data Buckets

Data is aggregated into buckets
1 hour

10 minutes

raw



Creating an ML Job from a backstage perspective
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Data Transformation

Functions define how data is transformed (mean, count, sum, ...)
mean

max

raw



• online approach (does not require (re-)access to the raw data)

• stores features (e.g. seasonality) as well as condensed historic information

• evolving: up-to-date to the last received bucket

• adapts to new data (up to complete re-learning)

ML Model
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What is stored inside of a model

self-contained artifact



Creating an ML Job from a backstage perspective
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Models

Number of build models depend on detectors and data splits

detectors

data splits

• a detector defines fields function

• a data splits allow individual models per split
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Models

Number of build models depend on detectors and data splits

detectors

data splits



• What we model and why

• trend model

• residual model

• modelling anomalous periods

• dealing with change, dealing with outliers

The Anatomy of a Model
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Subtitle



• use existing models to project into the future (on-demand)

• provide a visualization of projection

• can be run at different points in time

ML Model for forecast
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From the past to the future (> 6.1)

A ML model describes what is ‘usual’



• should not interfere with real-time analysis, runs in parallel

• low resource usage

• multi-user, repeatable

ML Forecast 
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From the past to the future

Design goals



ML Forecast 
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Request for forecast Take a copy of 
corresponding models 

Continue real time 
processing

Concurrently run 
forecast

Forecast results get 
written back into the 

ML result index

Elasticsearch + X-pack

Machine Learning Job

Realtime Data Feed

Forecast Request

Detection Results

Forecast Results



Forecast challenges



Forecasting goal
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“Accurate time series forecasting for a range of realistic data 

characteristics with minimum human intervention”



Forecasting challenge: multiscale effects
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Forecast ?

Forecast ?

time



Forecasting challenge: change points
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change point



Time series modelling: handling change
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Model 

Controller  



Time series modelling: handling change
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Multiscale effects
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• Reversion to behaviour on a given time frame typical

• Using one model, even with control of the “time window”, can’t capture this

• Ensemble + adjust weights based on how far ahead to predict



Change points

27

Change Detection (BIC)

H0  No change

H1  Time shift

H2  level shift

Change model

m x 1{ change }
Change



Change points
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Change points
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Change points
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• Need explicit handling of change points

• Detect and model level shifts, time shifts, etc

• Roll out multiple possible realisations of the change model to forecast and use 

these to get expectation and confidence intervals



Summary
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• Deterministic components of model; to forecast at time    simply evaluate at time 

• Maintain ensemble of trends for multiple time scales, i.e. 

• Forecast using weighted average with weight a function of look ahead time, i.e. 

• Detect and model probabilistically change points

• Roll out multiple possible realisations of the change model to forecast



• Alerting: When do I run out of supplies?

• Further scalability: Large Jobs with lots of data splits

• Quality assessment: How good was my forecast?

• Multivariate: Forecast group of metrics using correlations

Forecasting: the future
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Tell us your use case
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More Questions?

Visit us at the AMA



www.elastic.c
o
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Please attribute Elastic with a link to elastic.co


