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Introduction

The global threat landscape is dynamic, reactive, and overwhelming. As 
threat actors launch attack after attack, they force security teams to shift 
their attention and resources on a regular basis. The best way to address, 
and even preempt these threats, is detection engineering — a practice that 
teams rarely have enough resources for. 

Effective detection engineering demands a detailed understanding of the 
attack surface and tools in an organization. Security teams must rely — 
sometimes exclusively — on their tools to make up for gaps in resources. 
In an industry that is so demanding of expertise, security vendors have an 
obligation to deliver and continuously innovate upon quality products that 
alleviate security teams from a siloed approach. 

Elastic Security Labs remains dedicated not only to innovating upon 
our Elastic Security solution with research and protections, but also 
empowering the security community at large by driving discussions and 
sharing practices. This report will give our users an in-depth look at how we 
create, maintain, and assess our rulesets within Elastic Security, providing 
broader context into detection engineering and how teams may benefit. Our 
expertise is made available for the entire security community, regardless of 
familiarity with or patronage of our technology. 

The 2025 State of Detection Engineering at Elastic explores a full year of 
our detection engineering efforts: October 2023 - October 2024. This time 
frame was chosen to incorporate our work following the 2023 Elastic Global 
Threat Report and elicit enough data for patterns to emerge. 

As such, the way we manage detection engineering for the Elastic Security 
solution will look different from your own practices, but we hope that by 
sharing what we do, we set the stage for an in-depth discussion on the 
practice of detection engineering. We hope that you’ll join us in 
this conversation. 
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Part 1

Detection engineering 
in practice

The State of Detection Engineering at Elastic begins where we begin: with 
our rulesets. Elastic Security Labs maintains SIEM Detection and Endpoint 
Protection rulesets. Our SIEM Detection rules cover a broad range of 
threats across operating systems and 3rd party platforms like AWS, GitHub 
and Kubernetes. Our Endpoint Protection rules prevent ransomware and 
malware, detect advanced threats, and arm responders with vital context 
using our endpoint agent. 

Regardless of the ruleset, there are many different strategies for developing 
rules. We’ll begin by sharing how we utilize real-world threat campaigns 
— sometimes exposed by our very own colleagues! — to shape our focus. 
From there, we’ll transition into our proactive designs for future-proofing 
these rules: our development lifecycle. We’ll explore how a multi-pronged 
approach to detection engineering, combining real-world threat analysis and 
robust rule development, can enhance threat detection capabilities. 

1.1
Real-world threat analysis

Elastic’s detection engineering strategies are deeply influenced by the 
retrospective analysis of real-world threat behavior, security telemetry from 
triggered alerts, and detonated malware samples. This hindsight analysis 
and historical data help us to refine our existing detections, develop new 
rules in response to evolving adversaries, and identify previously undetected 
threats. We’ll highlight a couple key examples of our approach.

 
The CUPS vulnerability
On September 26, 2024, security researcher Simone Margaritelli  
(@evilsocket) disclosed a group of critical vulnerabilities in CUPS (Common 
Unix Printing System) utilities. These vulnerabilities — CVE-2024-47076, 

https://github.com/elastic/detection-rules
https://github.com/elastic/protections-artifacts
https://github.com/elastic/protections-artifacts
https://www.cve.org/CVERecord?id=CVE-2024-47076
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1.1 Real-world threat analysis

Our team:
Reviewed available 
threat intelligence 
to fully understand 
the exploit chain.

Obtained a proof of 
concept (PoC) to simulate 
real-world exploitation.

Tested the PoC in a controlled 
test environment with 
vulnerable endpoints to 
determine detection strategies.

CVE-2024-47176, CVE-2024-47175, and CVE-2024-47177 — enabled 
unauthenticated remote code execution (RCE) on widely used UNIX-based 
systems, including most GNU/Linux distributions, BSDs, ChromeOS,  
and Solaris.

In response, we promptly assembled our team of detection engineers and 
researchers to methodically analyze the emerging threat. Prioritizing user 
protection, we temporarily redirected focus from other projects to conduct a 
thorough assessment of the vulnerabilities.

We focused on two primary attack scenarios: 

1.	 Using living-off-the-land (LOL) techniques to establish a reverse shell
2.	 Retrieving and executing a remote payload to achieve RCE 

While emulating these attack scenarios, we assessed the impacts on 
our system and analyzed activity logs for process activity and command 
execution patterns. These insights informed our detection strategy and 
remediation steps for customer guidance. 

By leveraging our streamlined processes for rule development, deployment, 
and content publishing, we delivered detection coverage and public 
guidance for the community. While part of the team worked on writing 
and validating detection rules, others documented the findings for an 
informative article on Elastic Security Labs — which included remediation 
recommendations. Rules like Cupsd or Foomatic-rip Shell Execution, which 
detects shell executions from the foomatic-rip parent process, captured all 
33 of our PoC attempts.

 
Local Privilege Escalation on Windows
Last March, our team examined publicly disclosed zero-day vulnerabilities 
targeting the Windows Common Log File System (CLFS) and Desktop 
Window Manager (DWM) Core Library. We analyzed exploitation methods to 
identify behavioral patterns indicative of Privilege Escalation attempts. By 

https://www.evilsocket.net/2024/09/26/Attacking-UNIX-systems-via-CUPS-Part-I/
https://github.com/RickdeJager/cupshax/blob/main/cupshax.py
https://github.com/RickdeJager/cupshax/blob/main/cupshax.py
https://www.cve.org/CVERecord?id=CVE-2024-47176
https://www.cve.org/CVERecord?id=CVE-2024-47175
https://www.cve.org/CVERecord?id=CVE-2024-47177
https://www.elastic.co/security-labs/cups-overflow
https://www.elastic.co/docs/reference/security/prebuilt-rules/rules/linux/execution_cupsd_foomatic_rip_shell_execution
https://manpages.ubuntu.com/manpages/plucky/en/man1/foomatic-rip.1.html
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focusing on the dynamic behaviors of these exploits — such as the creation 
of BLF files followed by unexpected system-level activities — we developed 
a resilient detection strategy for these complex vulnerabilities that included 
both behavioral-based detection rules and signature-based YARA rules. 

Specifically, we designed high-level behavioral detections by correlating 
file manipulation events involving clfsw32.dll APIs (CreateLogFile and 
AddLogContainer) with subsequent unexpected system integrity-level 
process activity (i.e. spawning a system child process, API call, file, or 
registry manipulation with system privileges). In parallel, we leveraged YARA 
to hunt for unsigned Portable Executable (PE) files that import the same 
user mode APIs and an atypical number of functions from clfsw32.dll. 
While targeted detections for highly exploited Windows components like 
CLFS and win32k provide valuable coverage, detecting Privilege Escalation 
attempts across a broad range of exploits requires a strategy that extends 
beyond individual vulnerabilities.

Adversaries frequently reuse core exploitation techniques across 
different vulnerabilities. As a result, investing in behavior-driven 
detection mechanisms — such as identifying Kernel address space 
layout randomization (KASLR) bypass attempts, token swapping, and 
PreviousMode abuse — offers wider coverage and long-term resilience 
against evolving privilege escalation techniques. More on how we explored 
these samples can be found in In-the-Wild Windows LPE 0-days: Insights & 
Detection Strategies.

Figure 1: We can also look for unusual activity in DWM by baselining child processes and file activity 

1.1 Real-world threat analysis

https://github.com/search?q=repo%3Aelastic%2Fprotections-artifacts%20CLFS&type=code
https://yara.readthedocs.io/en/stable/gettingstarted.html
https://www.elastic.co/security-labs/itw-windows-lpe-0days-insights-and-detection-strategies
https://www.elastic.co/security-labs/itw-windows-lpe-0days-insights-and-detection-strategies
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Based on our telemetry visibility, dwm.exe rarely spawns legitimate 
child processes. Figure 1 is an example of dwm.exe spawning cmd.
exe as a result of exploitation. To further elevate privileges, the 
shellcode triggers a logoff by executing the shutdown /l command, 
which triggers the execution of the LogonUI.exe process running 
as a SYSTEM user. The two main detection points here occur when 
dwm.exe drops a PE file to disk and when LogonUI.exe loads a 
DLL, with the call stack pointing to dcomp.dll — an indicator of 
marshaling/unmarshaling Direct Composition objects.

Retrospective detection engineering is a cycle of research, analysis, 
validation, and adaptation. It goes beyond developing better detections —  
it depends on continuous engagement with exploit and vulnerability 
research. Engineers must understand not just how an exploit works, but 
how its effects manifest within system telemetry across diverse threat 
scenarios. By closely examining in-the-wild threat behavior, analyzing 
past incidents for detection gaps, and leveraging public repositories 
like VirusTotal to validate and refine detection logic, we ensure that our 
defenses remain adaptable and forward-looking.

1.2
Robust rule development

Our detection engineering strategy, while rooted in retrospective analysis, 
has evolved to be future-focused in nature. We have developed techniques 
to automate rule schema validation, refine our rule development process, 
and proactively detect emerging threats. This approach shapes everything 
from our internal rule deployment processes to novel uses of industry 
frameworks — ultimately ensuring that our detection capabilities evolve in 
step with a changing threat landscape. 

 
Rule validation and detections-as-code
A major part of the work we do as detection engineers is maintaining our 
rules through a lifecycle. We’ve implemented automated query and rule 
validation into our Continuous Integration (CI) workflow in GitHub. We 

1.1 Real-world threat analysis

https://github.com/elastic/protections-artifacts/blob/72fd8cad90189e9d145d22eb3d4fee2fe3d5902f/behavior/rules/privilege_escalation_unusual_desktop_window_manager_child_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/privilege_escalation_potential_privilege_escalation_via_logonui.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/privilege_escalation_potential_privilege_escalation_via_logonui.toml
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1.2 Robust rule development

automatically validate rule syntax across multiple stack and integration 
versions, test detection efficacy against sample datasets, and ensure 
rules are fully functional before deployment. This is a process we have 
done for years across all of Elastic’s supported query languages, and we 
recently added Elasticsearch Query Language (ES|QL) — Elastic’s piped 
query language — into many of these routines. We committed to doing 
the same with ES|QL because automated rule validation reduces the risk 
of introducing noisy or inaccurate rules into production environments for 
our users. Furthermore, the streamlined validation process helps our team 
iterate faster by closing the feedback loop between rule creation, testing, 
and deployment.

In addition to query and rule validation, we’ve always applied a 
detections-as-code (DaC) approach to rule management. DaC allows 
detection rules to be treated as software artifacts, subject to the same 
robust development practices used in traditional software engineering. 
Key actions here include automated testing, peer review, and version 
control. These help catch errors and inefficiencies before they impact our 
users and enable better collaboration and consistency across environments. 
Version control at the rule level streamlines updates allowing individual rule 
changes to be tracked and rolled back if necessary.

There has been significant refactoring and updating to decouple 
components originally designed for internal use only, to allow 
for adoption by the community and users. For more guidance, 
Detections as Code Reference describes principles to adopt a DaC 
approach to Elastic Security rule management.

Together, these practices allow us to manage our ever-growing ruleset 
at scale, accelerate our internal release cycles, minimize disruptions from 
erroneous rules, and facilitate a more agile response to evolving threats.

 
Maturing rules with the DEBMM
Even with advanced CI and DaC, detection engineering can suffer from 
misaligned priorities and an inconsistent approach to rule maturity. 
To systematically address these pitfalls, we introduced the Detection 
Engineering Behavioral Maturity Model (DEBMM) — a universal model 

https://www.elastic.co/what-is/query-language#experience-elasticsearch-query-language-esql
https://www.elastic.co/guide/en/elasticsearch/reference/current/esql.html
https://www.elastic.co/security-labs/dac-beta-release
https://dac-reference.readthedocs.io/
https://www.elastic.co/security-labs/elastic-releases-debmm
https://www.elastic.co/security-labs/elastic-releases-debmm
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Refine 
Repeat, 
Mature

Tier 0:
Foundation

Detection 
Engineering 

Behavior 
Maturity Model

Tier 1:
Basic

Tier 4:
Expert

Tier 3:
Advanced

Tier 2:
Intermediate

Figure 2: The Detection Engineering Behavior Maturity Model 

used to assess and mature processes and behaviors of security teams. 
Spanning five maturity stages (Foundation, Basic, Intermediate, Advanced, 
and Expert), the DEBMM provides benchmarks for behaviors like telemetry 
integration, rule management, and continuous refinement based on 
adversary insights.

We are currently using this model to build a framework for how we track 
the maturity of our rulesets, starting with Azure. While we have a good set 
of standard rules available, we know this ruleset needs some attention. 
Our assessment began with an acknowledgement of its current state: not 
actively maintained, with sparse documentation, and thus initially assessed 
as Tier 0. Despite this, the existence of standard rules from community 
contributions and Elastic researchers provided a foundation for evaluation. 

The assessment focused on four key criteria: structured rule development 
and management, creation and maintenance of detection rules, roadmap 
documentation, and threat modeling. Both qualitative and quantitative 
measures were evaluated, revealing areas where existing practices, such as 
schema validation and peer reviews within the Detection Rules repository, 

1.2 Robust rule development
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provided some maturity, while other areas, like regular rule creation and 
updates, lacked consistency. This process identified specific improvements 
needed and led to the development of a detailed plan with prioritized tasks 
to progress toward Tier 1 maturity.

 
Advancing rule development through proactive 
threat hunting
While we dedicate substantial effort to building robust detections, we 
recognize that alerting on malicious behavior is only one part of an effective 
overall approach. Proactive threat hunting offers a deeper understanding of 
an environment by uncovering tactics and anomalies that might otherwise 
go unnoticed. Internally, we use a curated library of hunting queries, which 
are routinely run against our alert telemetry clusters. When these queries 
return potentially suspicious leads to our dedicated Slack channel, our 
detection engineers investigate further. From there, we may refine existing 
rules or develop new ones based on the patterns we discover.

Additionally, we share a public set of threat hunting queries alongside 
our detection rules, giving the community a structured approach aligned 
with the methods our team relies on. We view rules and hunting queries 
as complementary: once a rule fires an alert, correlated hunting queries 
can offer additional context or act as pivot points during incident triage. 
Likewise, some hunting logic may capture potentially malicious behaviors 
that don’t yet meet the threshold for a universal detection rule — but 
still provide valuable insight for analysts. Our goal in publishing these 
hunting queries is to enable other security teams to tailor them to their 
own environments.

One notable example occurred in September 2024, when one of our 
researchers spotted suspicious behavior in our Linux alert telemetry. Further 
investigation revealed an active threat (later designated activity group 
REF6138) had compromised a customer’s Linux server. By partnering with 
our threat research team, we reverse-engineered the newly discovered 
malware, created YARA signatures to detect the malware family, and 
enhanced our behavioral SIEM and Endpoint Protection rules to cover its 
unique adversary tactics, techniques, & procedures (TTPs); as described 
under the MITRE ATT&CK framework. We also published a comprehensive 
report, Betting on Bots, that detailed the campaign’s methods and provided 
defense recommendations. 

1.2 Robust rule development

https://github.com/elastic/detection-rules/tree/6d8cfda10f6fed9426336add8d2ac558416a805a/hunting
https://attack.mitre.org/resources/faq/
https://www.elastic.co/security-labs/betting-on-bots
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Robust rule management processes and DaC provide the technical 
backbone for efficiently deploying and managing detection rules, while 
the DEBMM provides a systematic approach to consistently improve and 
mature those rulesets. What sets Elastic apart is not just the introduction of 
these tools, but how we strategically incorporate these elements into the 
detection engineering lifecycle as an operational approach. Query validation 
and CI workflows ensure precision at the foundational level, DaC enables 
scalable rule management, and threat hunting delivers both enhanced 
context and a proactive approach to threat detection. These future-proof 
methodologies provide not just better tools but a smarter, more scalable 
approach to detection engineering.

1.2 Robust rule development
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Part 2

Enhancing Elastic Security 

2.1
Integration enrichment 

The detection capabilities of our SIEM solution are rooted in both Elastic’s 
detection engine — which allows us to build out our rulesets — and the 
diverse landscape of supported integrations. With more than 450 to choose 
from, we can collect, visualize, and query any data from any source.

Over the past year we’ve significantly expanded our detection engineering 
coverage by utilizing various integrations available within the Elastic Security 
ecosystem and improving data sources within our endpoint agent. A key 
enabling factor in these efforts has been Elastic’s commitment to developing 
and enhancing both Elastic’s core protection tools — like the Elastic Defend 
integration for our endpoint agent — and widely adopted third-party 
platforms, such as AWS, Okta, and GitHub. 

As detection engineers and security researchers, we collaborate with our 
endpoint agent and integration developers to enrich existing data sources 
with the most pertinent context required for effective threat detection. This 
section of the SDEE will explore some of those enhancements and their 
impact on detection engineering at Elastic. 

Figure 3: Top 10 integrations used for new and tuned rules

Endpoint 
651

Windows 
345

System
130

AWS
CloudTrail 
96

Okta
44

GitHub
21

Network 
Traffic
10

Auditd
Manager
55

Microsoft 
365
31

Kubernetes
12

https://www.elastic.co/integrations/data-integrations
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2.1 Integration enrichment

We focused our efforts this year on a broad range of security topics related 
to endpoint, cloud, and software-as-a-service (SaaS). As new threats 
emerged, we emulated techniques with existing frameworks, detonated 
malware, exploited new vulnerabilities, and created threat simulation 
tools for internal use. These tools include Panix, a Linux Persistence tool 
developed by Ruben Groenewoud, and SWAT, a Google Workspace red 
teaming tool developed by Terrance DeJesus and Justin Ibarra. Both of 
these are maintained by their creators, but are available for public use. 
Let’s explore some of the integrations we’ve used this year, a few of the 
enhancements made to those integrations, and the resulting detection 
engineering outcomes.  

Cloud and SaaS integrations 
Cloud and SaaS was a major area of focus for us this year — 15% of new 
and tuned rules were related to these platforms, with AWS CloudTrail and 
Okta integrations accounting for nearly 70% of those rules.

Figure 4: Distribution of new and tuned rules for Cloud and SaaS integrations

AWS CloudTrail

Last year there were many cloud-specific enhancements made across the 
Elastic ecosystem. To mature our largest existing cloud platform ruleset, we 
comprehensively audited our existing AWS CloudTrail detection ruleset. The 
goal of the audit was to look for areas of improvement in existing detection 
logic, analyze alert telemetry to find tuning opportunities, update MITRE 
tactic and technique assignments, and build new rules to fill coverage gaps. 

AWS CloudTrail 
96

Microsoft 
365 
31

Kubernetes 
12

AWS
Bedrock 
4

Azure
Activity 
Logs 
1

Okta 
44

GitHub 
21

Google 
Workspace 
5

Azure  
Signin Logs 
2

https://www.elastic.co/security-labs/primer-on-persistence-mechanisms
https://github.com/elastic/SWAT
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When determining our current coverage, we took a couple of approaches. 
First we researched the current threat landscape for Cloud, both generally 
and specifically for AWS. Using resources like MITRE ATT&CK’s Cloud 
Matrix, Wiz’s Cloud Threat Landscape database, and other recent cloud-
related breach reports, we compared what threat actors were doing to what 
our ruleset was detecting. Then we looked at some of the most popular 
cloud threat emulation tools, like Stratus Red Team and the AWS Cloud 
Incident Response Team (CIRT) Workshops, compared those emulations 
with our ruleset, and executed a strategic plan to fill in the gaps. 

By October 2024 we had significantly improved the existing ruleset with 
over 50 rule tunings, more than 40 new rules, and 17 threat hunting queries. 
These rules uncover high-risk activities within AWS environments related to 
compromised access keys, abused lambda functions, overly permissive IAM 
policies, and more. We’ve continued regular maintenance of our AWS ruleset 
and made plans to extend this comprehensive audit to include both Azure 
and GCP cloud platforms as our next priority.

With Okta’s numerous breach reports, we had previously conducted initial 
research to develop Dorothy, our threat emulation tool for the platform, and 
established a basic ruleset. Our next step was to identify which parts of 
the Okta threat landscape were already covered by existing detections and 
then pivot to threat research to uncover any gaps for in-the-wild attacks, 
such as those from the Scattered Spider threat group known for targeting 
Okta users. We replicated these attack scenarios in our lab environment and 
addressed the gaps with new or tuned detections.

Collaboration with our integrations and telemetry teams was crucial 
to ensure robust global alert telemetry, allowing us to measure the 
effectiveness of our rules and make necessary adjustments.

To support advanced detection techniques, we requested enhancements 
to the Okta integration for system logs and the Okta Entity Analytics 
integrations. The Okta System Log API provides an audit trail of system 
events, while the Entity Analytics integration offers contextual user data via 
the Okta Users and Devices APIs. Together, these integrations tell us what 
happened and give context on who did it. The Entity Analytics integration 
initially pulled user data such as group memberships and status from the 
Okta Users API. We enriched this data with additional metadata related to 

2.1 Integration enrichment

https://attack.mitre.org/matrices/enterprise/cloud/
https://attack.mitre.org/matrices/enterprise/cloud/
https://www.wiz.io/cloud-threat-landscape
https://stratus-red-team.cloud/
https://aws.amazon.com/blogs/security/aws-cirt-announces-the-release-of-five-publicly-available-workshops/
https://aws.amazon.com/blogs/security/aws-cirt-announces-the-release-of-five-publicly-available-workshops/
https://github.com/elastic/dorothy
https://attack.mitre.org/groups/G1015/
https://www.elastic.co/guide/en/integrations/current/okta.html
https://www.elastic.co/guide/en/integrations/current/entityanalytics_okta.html
https://developer.okta.com/docs/api/openapi/okta-management/management/tag/SystemLog/#tag/SystemLog
https://developer.okta.com/docs/api/openapi/okta-management/management/tag/User/
https://developer.okta.com/docs/api/openapi/okta-management/management/tag/Device/#tag/Device
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roles and authentication factors to enhance our querying capabilities, 
allowing us to write detections based on both actions and user context. 

For example, if a user, “Alice,” is assigned admin rights by “Bob,” we can 
use System Logs to view this action and answer questions like “Does 
Bob typically assign user roles?” and “Is he authenticated from a typical 
location?” We can then use additional context from Entity Analytics to 
answer questions like “Does Bob belong to an overly permissive group?” or 
“Does he have MFA disabled?” These questions can be used for anomaly-
based detection, threat hunting, and machine learning (ML) to automate 
the detection of potential threat activity. 

Securing LLM workflows via integrations and 
standardized fields
A subset of generative AI (GenAI), large language models (LLMs) introduce 
a layer of interpretive reasoning to workflows by analyzing complex 
relationships between seemingly disparate data points. As the world was 
diving headfirst into GenAI, our team realized the need to embed security 
into these LLM workflows. We used Elastic AI Assistant as an example 
third-party application — AI Assistant empowers analysts by offering 
dynamic threat insights, anomaly detection, and contextual analysis across 
vast datasets. Initially, we developed a prototype proxy solution to extract 
security-relevant fields from interactions with the AI Assistant. 

This approach allowed us to ingest and analyze data from vendor solutions 
that lacked built-in security auditing capabilities. Our proof of concept 
validated the need for deeper monitoring and highlighted opportunities to 
enhance integration processes for broader usability. In collaboration with 
our Integrations team, we developed a new integration for AWS Bedrock 
model invocation logs, enabling seamless ingestion of LLM-related activity 
for threat monitoring. Alongside this, we developed standardized field 
mappings for LLM interactions, aligning them with the Elastic Common 
Schema (ECS) and OpenTelemetry (OTel) standards. This allows for 
consistent data ingestion across various LLM platforms, and makes it 
easier to maintain detection rules by minimizing the need for separate rules 
for each LLM vendor. As we continue to add and enhance our integrations, 
we are strategizing to align other LLM-based integrations to the new 
standards we’ve set, paving the way for a unified experience across the 
Elastic ecosystem. 

2.1 Integration enrichment

https://www.elastic.co/elasticsearch/ai-assistant
https://www.elastic.co/security-labs/elastic-advances-llm-security
https://www.elastic.co/security-labs/elastic-advances-llm-security
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By strategically enhancing cloud and SaaS integrations — and pairing them 
with advanced detection methods — we worked to deliver deeper visibility 
into the most critical layers of modern IT environments. From strengthening 
coverage for cloud platform and identity providers to monitoring LLM-based 
applications, our initiatives transformed multiple data sources into coherent, 
high-fidelity detections while enabling a more context-aware security 
posture for our users.

2.2
Expanding endpoint visibility

Maintaining our endpoint visibility is crucial on multiple fronts: it allows 
us to detect threats and anomalies and returns detailed telemetry data 
for us to investigate. Enhancing these capabilities benefits our product 
and users, but also allows us to respond more thoroughly to evolutions 
in the threat landscape.  

Evolving Windows in-memory threat detection
In-memory threat detection is a pivotal aspect of endpoint security, 
given that many threats now operate entirely in memory for purposes of 
Defense Evasion — often by manipulating process memory or indirectly 
executing kernel-level syscalls. Over time, our approach to in-memory 
detection has evolved considerably through new technologies and 
innovative engineering strategies. By collaborating closely with our 
endpoint agent development team, we have enriched data sources to 
enable more advanced detection techniques.

Early detection methods for in-memory threats often relied on malware 
signatures and user-mode hooks — techniques that advanced 
attackers learned to circumvent. These approaches offered limited 
insight into in-memory activity and over time were insufficient against 
sophisticated threats. Preempting these shortcomings, we identified 
the need for kernel-level visibility improvements to effectively monitor 
memory manipulations. Starting in May 2023, we began adding 
significant capabilities to Elastic’s kernel telemetry to capture more 
robust data, including:

2.1 Integration enrichment

https://www.elastic.co/blog/detecting-cobalt-strike-with-memory-signatures
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2.2 Expanding endpoint visibility

	� Collecting detailed call stack data directly from the kernel — Elastic 8.8

	� Extending Microsoft’s Event Tracing for Windows (ETW) Microsoft-
Windows-Threat-Intelligence provider for near real-time visibility, 
including call stacks, into critical syscalls like VirtualAlloc, 
VirtualProtect, and WriteProcessMemory — Elastic 8.11

	� Enhanced Keylogger detection capabilities — Elastic 8.12

	� TCP connect call stacks — Elastic 8.14

	� DeviceIoControl driver events with call stacks — Elastic 8.16

	� Added visibility for Windows Management Instrumentation (WMI), a 
commonly abused administration service — Elastic 8.16

	� Added Antimalware Scan Interface (AMSI) events to provide deep 
runtime inspection of Microsoft’s native script engines and beyond — 
Elastic 8.18

As we continue to develop and refine Elastic Security, we will be delivering 
more impactful enhancements to our visibility and detection capabilities:

Token 
Impersonation 
API events to 

detect privilege 
escalation

Expanding 
OpenProcess API 
events to detect 
cookie stealer 

tradecraft

ResumeThread 
API events and 
an “early-bird” 

behavior heuristic 
to detect process 

hollowing

ProcessFreeze 
API events and an 
“active-debugger” 
behavior heuristic 
to detect abuse 

of Windows 
Debugging APIs

The release and timing of any features or functionality described 
in this post remain at Elastic’s sole discretion. Any features or 
functionality not currently available may not be delivered on time 
or at all. 

https://www.elastic.co/security-labs/upping-the-ante-detecting-in-memory-threats-with-kernel-call-stacks
https://www.elastic.co/security-labs/doubling-down-etw-callstacks
https://www.elastic.co/security-labs/protecting-your-devices-from-information-theft-keylogger-protection
https://www.elastic.co/blog/whats-new-elastic-security-8-14-0
https://www.elastic.co/blog/whats-new-elastic-security-8-16-0
https://attack.mitre.org/techniques/T1047/
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://www.elastic.co/blog/whats-new-elastic-security-9-0-0
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Our continuous enhancements to Kernel ETW telemetry paired with the 
incorporation of cutting-edge detection techniques allow us to more 
effectively identify and mitigate advanced threats in near-real time. These 
advancements are pivotal in safeguarding our users against sophisticated 
adversaries and their evolving tactics. 
 
Adding new data sources for macOS
Our team identified a gap in macOS threat coverage because there was 
no data source equivalent to the Windows Dynamic Link Library (DLL) load 
event that could be used to detect the loading of dynamic libraries (dylibs) 
in macOS. After exploring the Apple Endpoint Security API, we discovered 
there was no dedicated dylib load event for us to subscribe to. However, we 
noticed that mmap events are generated any time a process memory-maps 
a binary, dylib, or file. Collaborating closely with our endpoint developers, 
we filtered mmap events to capture only dylib loads, enriching the resulting 
telemetry with code signature data and dylib hashing to form a dedicated 
first-of-its-kind dylib load event for macOS. 

New dylib load event enables detection of advanced Evasion on macOS

Once this new event type was created, we built and tested rules around 
it. During our research, we examined various Command-and-Control (C2) 
frameworks featuring in-memory JavaScript for Automation (JXA) execution 
— a technique that loads and executes JXA scripts entirely within process 
memory, effectively bypassing many conventional detection mechanisms. 
By monitoring the dylib load events for the rapid, consecutive loading of 
the JavaScript and StandardAdditions libraries, our team observed a unique 
pattern essential for executing JXA scripts in memory. 

We developed a sequence rule, In-Memory JXA Execution via 
ScriptAdditions, that detects these two dylib loads by the same process in 
quick succession. Testing this rule against multiple tool implementations 
confirmed its reliability; it generated surprisingly few false positives in our 
environment, so we confidently released it to our users. In doing so, we 
established a first-of-its-kind detection for in-memory JXA loading and 
execution using a novel dylib load event. This development not only expands 
our macOS detection capabilities but also demonstrates the value of 
engineering custom telemetry to capture advanced threat behaviors.

2.2 Expanding endpoint visibility

https://developer.apple.com/documentation/endpointsecurity/es_events_t/mmap
https://github.com/elastic/protections-artifacts/tree/main/behavior/rules/macos/defense_evasion_in_memory_jxa_execution_via_scriptingadditions.toml
https://github.com/elastic/protections-artifacts/tree/main/behavior/rules/macos/defense_evasion_in_memory_jxa_execution_via_scriptingadditions.toml
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New DNS telemetry uncovers first party intelligence findings on macOS

In addition to dylib load visibility, we recently enriched macOS network 
events with domain data and introduced a custom DNS event, another first-
of-its-kind data source for macOS. By capturing DNS requests alongside 
other network indicators, we broadened our detection capabilities for 
Initial Access and C2 methods. Almost immediately, these enhancements 
helped us surface a North Korean (DPRK) campaign targeting developers 
via malicious Node Package Manager (NPM) packages – reusable pieces of 
code stored in a public registry, which can be easily integrated into Node.
js projects. By correlating DNS event data with package service processes 
making suspicious queries, we traced malicious NPM packages to IP lookup 
domains used for C2. The DNS telemetry also offers insight into Exfiltration 
techniques, as some macOS malware leverages DNS channels to sneak 
data out. This new DNS event further underscores how expanding and 
enriching endpoint telemetry can yield tangible benefits in uncovering real-
world attacks.

 
Broadening Linux visibility 
Elastic’s expansive ecosystem of integrations significantly amplifies our 
detection capabilities for Linux systems by offering in-depth visibility into a 
wide array of OS activities. For instance, the System integration facilitates 
the collection and analysis of crucial authentication logs and syslog events, 
providing insights into user activity and system processes. The Auditd 
Manager integration focuses on audit events, enabling the tracking of 
changes and potential security violations within the system. Additionally, 
the File Integrity Monitoring (FIM) integration plays a key role in maintaining 
system integrity by monitoring and alerting on modifications to critical files. 

By leveraging these integrations, we broaden our ability to detect and 
respond to potential threats within Linux environments. For example, 
System may log a suspicious login event, while Auditd Manager captures 
an unexpected syscall related to file access, and FIM detects modifications 
to a critical system file; all together indicative of an attacker attempting to 
modify system files to maintain Persistence, escalate privileges, or cover 
their tracks. 

2.2 Expanding endpoint visibility

https://docs.npmjs.com/about-npm
https://www.elastic.co/guide/en/integrations/current/system.html
https://www.elastic.co/guide/en/integrations/current/auditd_manager.html
https://www.elastic.co/guide/en/integrations/current/auditd_manager.html
https://www.elastic.co/guide/en/integrations/current/fim.html
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Elastic Defend

Our endpoint detection strategy is tightly coupled with the Elastic Defend 
integration, which allows us to monitor host-based event categories like 
file, process, network, and many more across Windows, Linux, and macOS 
endpoints. A large portion of our detection engineering efforts rely solely 
on this integration, as the dataset provides deep-level visibility suitable for 
most threat scenarios.

A major enhancement we made (in collaboration with our integrations and 
endpoint development teams) was the addition of data fields capturing 
effective and permitted capabilities for Linux processes. Capabilities 
are a subset of root level privileges that can be individually assigned to 
processes in order to limit excessive permissions. We worked together with 
our endpoint developers to add the most relevant effective and permitted 
capabilities for running processes across all Linux-specific integrations, 
including Elastic Defend.

Root level kernel permissions bypass all permission checks, so they 
are essential to monitor. These are often assigned to container 
processes and can be abused for container breakout techniques.

With this enhanced data, we were able to fill coverage gaps related to Linux 
Privilege Escalation techniques. We developed detection rules such as 
Privilege Escalation via CAP_SETUID/SETGID Capabilities; which identifies 

2.2 Expanding endpoint visibility

https://www.elastic.co/guide/en/integrations/current/endpoint.html
https://www.elastic.co/guide/en/security/current/privilege-escalation-via-cap-setuid-setgid-capabilities.html
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sequences where a process with CAP_SETUID or CAP_SETGID capabilities 
executes and subsequently elevates its access to root (UID/GID 0). These 
capabilities enable processes to manipulate user and group identity, 
potentially allowing attackers to exploit misconfigurations and escalate their 
privileges to root.

 
Auditd Manager

Auditd is a user-space component of the Linux Auditing System that hooks 
into the Linux kernel space and captures detailed information about syscalls 
and other security-related events. With our Auditd Manager integration, we 
can establish a subscription to the kernel to receive these events as they 
occur. Multiple messages sent for a single auditable action are consolidated 
into one easily digestible event that includes the different aspects of the 
activity (the syscall itself, file paths, current working directory, process 
title, and more). As we’ve explored, Auditd is a powerful tool for detection 
engineering and we use this integration to expand visibility in some areas 
where Elastic Defend is limited.

One of our most effective Auditd rules, Kernel Driver Load, detects when 
a Linux loadable kernel module (LKM) is loaded through system calls. 
An LKM is a piece of code that can be dynamically loaded into the Linux 
kernel to extend its functionality without the need to reboot the system. 
Threat actors can load a rootkit using LKMs, giving them total control of 
the system and the ability to hide from security products. As other rules 
monitor for the addition of LKMs through system utilities or .ko files, this 
rule is designed to catch attempts by rootkits to evade those detections 
by monitoring for kernel module additions at the system call level. Using 
Auditd Manager, this rule monitors the init_module() and finit_module() 
syscalls, capturing all LKM loads and making bypass attempts by threat 
actors very hard, if not impossible.

 
File Integrity Monitoring (FIM) integration
Detecting built-in shell functionality such as echo and pipes/redirects 
presents unique challenges, as these operate within the shell process 
itself rather than invoking distinct executables. As a result, traditional 
process-based detection methods may not capture file modifications made 
through these utilities. To ensure comprehensive visibility at the endpoint 
level, we leverage the FIM integration. FIM monitors files in real time via a 

2.2 Expanding endpoint visibility

https://www.elastic.co/security-labs/linux-detection-engineering-with-auditd
https://www.elastic.co/guide/en/security/current/kernel-driver-load.html
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subscription with the OS and sends events when a change (create, update, 
delete) to those files occurs. This was a vital part of our detection strategy 
for Linux Persistence mechanisms. The rule Potential Persistence via File 
Modification uses FIM to detect modifications to a select group of files that 
are commonly abused for Persistence, like cron jobs, systemd services, 
message-of-the-day (MOTD), and SSH configurations. While Auditd can 
technically monitor files for changes as well, FIM is more optimized for this 
and is often the better choice for file monitoring.

These examples represent just a few of the many unique ways we leverage 
our broad selection of data sources to expand visibility and ultimately 
improve our endpoint detection capabilities. While we can use these 
integrations in isolation, they complement one another well in unique 
detection use-cases. For example, Elastic Defend might detect a process 
gaining specific capabilities, while Auditd Manager would then monitor 
for any unauthorized file access attempts using those capabilities. By 
combining these data sources, we can broaden our visibility and identify 
high-risk sequences of events indicative of malicious behavior.

By engineering deeper kernel-level visibility on Windows, pioneering 
novel dylib load and DNS telemetry on macOS, and using various Linux 
integrations creatively, our endpoint detection efforts have significantly 
expanded the scope of advanced threat coverage and early threat 
detection. These enhancements illustrate how strategic collaboration with 
endpoint developers and creative rule design can illuminate even the most 
elusive attacker behaviors.

2.2 Expanding endpoint visibility

https://www.elastic.co/guide/en/security/current/potential-persistence-via-file-modification.html
https://www.elastic.co/guide/en/security/current/potential-persistence-via-file-modification.html
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Part 3

Internal metrics and evaluation

Detection engineering success at Elastic is measured at two distinct levels: 
immediate operational performance and long-term strategic impact. Some 
metrics are tactical, focusing on day-to-day rule performance such as 
detection efficiency, false positive rates, and query execution speed. Others 
are strategic, evaluating our contribution to broader goals like organizational 
objectives and key results (OKRs).

3.1
Operational performance analysis

Our Endpoint Behavior rules are high-confidence and prevention-focused, 
designed to require minimal tuning and limited false positives. In contrast, 
our SIEM Detection rules provide broader threat coverage by leveraging all 
available data sources, tuning is expected as many of our low severity rules 
are meant to be used as signals and noisy by design — allowing for greater 
compatibility and control by users to fit to their environments.

We continuously refine these rules to adapt to the unique environments 
of our users. This ongoing effort does not imply that our rules are flawed 
from the start; rather, it demonstrates our commitment to ensuring broad 
applicability and effectiveness across diverse environments. By avoiding 
overfitting our rules to any single organization, we maintain their relevance 
and reliability for all our users.

Performance metrics measure day-to-day rule efficacy and noise 
levels by validating rule logic and guiding our tuning efforts, 
especially for our Endpoint Protections. By minimizing unintended 
noise and keeping our rules relevant as new threats emerge, 
we ensure our users can trust the alerts, respond swiftly to real 
incidents, and ultimately maintain a stronger security posture.
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3.1 Operational performance analysis

Protections malware feed efficacy
The protections malware feed efficacy score is a key metric used to validate 
the effectiveness of our Endpoint Protections against real-world threat 
behavior. 

To calculate this score, we ingest malware samples using our internal 
sandbox tool, Detonate. We process more than 500 per day, filtering out 
benign samples, and then for each malicious sample we analyze whether 
any Protection rules trigger. Any undetected malware is immediately triaged 
for coverage gaps, ensuring that new or evolving threats are accounted for. 
Our goal is to maintain a detection rate at or above 99%, and when coverage 
falls below this threshold, we investigate, improve detection mechanisms, 
and reassess protections. This metric validates the daily work of our 
detection engineers by ensuring broad malware coverage and identifying 
areas requiring improvement.

This score assesses our ability to detect and block 99% of malware 
samples using our multilayered detection features:

	� Behavioral protection rules
	� Malware detection 
	� Ransomware prevention

	� Memory threat detection
	� Malicious behavior monitoring
	� YARA signatures

Figure 5: Coverage rate for Windows malware by file type from Oct 2023 - Oct 2024
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Readers can view how we fared in the AV-Comparatives Malware Protection 
Test — an independent evaluation designed to simulate real-world attack 
scenarios against antivirus and endpoint security solutions.

 
Addressing false negatives and rule tuning
In addition to tracking malware coverage, we monitor telemetry for false 
negatives. If a rule is found to be underperforming, we collect additional 
telemetry and refine our detections. Fine-tuning rules is a crucial but 
selective process due to the scale of our coverage — spanning over 1,000 
Endpoint Protection rules, each tailored to different attack techniques (file, 
process, API-based detections, etc.). Tuning decisions requires understanding 
the rule logic, determining whether to exclude specific conditions (e.g., file. 
path, command.line), and analyzing agent coverage trends. 

One key threshold we monitor is sudden increases in alerting across agent 
environments. If a rule queries across 10,000 agents, and suddenly 1,000 
agents begin generating alerts for it, it’s likely false positives. The acceptable 
tuning threshold varies by environment size; for example, in a 1,000-agent 
deployment, a smaller alert spike may warrant tuning, whereas in a large-
scale deployment, stricter thresholds are applied before changes are made. 

We also assess whether or not there is room for additional protection types 
when an alert is triggered. For example, if a sample triggers a protection rule 
in behavior mode only but lacks corresponding memory or signature-based 
alerts, we look for ways we can further reinforce our detection of this sample 
using memory or signature-based rules.

 
Automated threshold-based prioritization for rule tuning

To systematically flag rules for review, we apply automated alert thresholds 
based on a 12-hour monitoring window. A rule is flagged for tuning based on 
the number of:

	� Total detections
	� Unique process names triggering the rule
	� Unique agents from a single cluster triggering the rule
	� Unique clusters affected, exceeding a total number of detections
	� Unique agents triggering the rule in 24 hours

3.1 Operational performance analysis

https://www.elastic.co/blog/elastic-security-malware-protection-test-av-comparatives
https://www.elastic.co/blog/elastic-security-malware-protection-test-av-comparatives


In
te

rn
al

 M
et

ric
s 

an
d 

Ev
al

ua
tio

n

25

When a rule exceeds these thresholds, automated alerts are sent to our 
dedicated Slack channel and distributed via email, prompting investigation. 
Additionally, a separate alert prioritizes “Top Clusters,” ensuring that the 
most widespread detection issues receive immediate attention. Since some 
endpoints run older detection artifacts, we also account for delayed rule 
rollouts. The process is fully automated until investigation begins, at which 
point we determine whether to refine or exclude specific rule conditions 
based on false positive analysis.

Rule variability with relative alert magnitude
Relative alert magnitude acts as another false positive indicator based on 
alert distribution, serving as a standardized measurement of randomness 
for alerts. Using our alert telemetry data, we take the volume of alerts 
generated across all hosts per month to find the mean for each rule. We 
then take the standard deviation (std) for each rule and come up with a 
std-to-mean ratio for each rule. This value represents how consistently a 
rule is triggering alerts.

High variability means a rule is triggering more sporadically across 
clusters. This is more indicative of true positive alerts because threat 
behavior often impacts our users in a random way. Low variability means 
a rule is triggering more consistently across clusters, which is more 
indicative of false positive alerts because threat behavior very rarely 
impacts our users in a consistent way. Instead, this may be a poorly tuned 
rule generating noise across clusters. 

We use this variability score to help us determine where to prioritize our 
detection engineering efforts. The goal is to maintain effective coverage 
while minimizing false positives, ensuring that variability reflects well-tuned 
rules aligned with detection engineering objectives. On a range of 0–n 
where 0 = truly consistent and n = variability, we determined a threshold 
value of .2 as a good indicator of a rule triggering too consistently and in 
need of potential tuning.

3.1 Operational performance analysis



In
te

rn
al

 M
et

ric
s 

an
d 

Ev
al

ua
tio

n

26

This threshold was based on our own independent knowledge of 
false positive alert data — we wanted to make sure the threshold 
we chose captured known noisy rules, while leaving room to include 
those we may not notice. Additionally, since this is only one of the 
metrics we use to determine rule efficacy, we felt comfortable 
keeping the scope a bit broad as we can use other indicators for 
further filtering.

Why mean alone is insufficient

While mean alert volume is a useful indicator of noise levels, it is not always 
the best measure of rule efficacy. A high mean could suggest an excess 
of false positives, but it could also reflect frequent legitimate alerting 
behavior or be skewed by older rule versions still in use. For example, the 
rule Suspicious Network Activity to the Internet by Previously Unknown 
Executable showed its highest alert volumes between October 2023 and 
February 2024, with mean values ranging from 969 to 4,660 alerts per 
month. At first glance, this spike might indicate excessive false positives; 
however, examining other variables paints a different picture.

Figure 6: Mean rule alert volume timeline for Suspicious Network Activity to the Internet by Previously 
Unknown Executable, differentiated by rule version
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3.1 Operational performance analysis

https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
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For context, this is a New Terms rule, meaning it only alerts on previously 
unseen values of a specific field within each environment — in this case, 
process.executable. This design inherently limits false positives, suggesting 
that the high alert volume may be expected given its broad detection logic. 
To validate this further, we examined rule versions. By February 2024, 
seven different rule versions were in production, and the highest mean 
values were all associated with version 1, meaning users running older rule 
packages were driving the alert volume.

A major rule tuning update was released with version 5 in November 
2023. By December 2023, after allowing time for users to adopt the 
update, the alert volume dropped significantly, with a mean value of 298 
compared to 4,660 from version 1. Some might still consider 298 too high, 
prompting further tuning consideration; however, instead of relying solely 
on mean values, we can assess the rule’s variability score to gain a more 
comprehensive view. The December 2023 version 5 std-to-mean ratio was 
5.62, well above our .2 threshold, indicating high variability — which strongly 
correlates with true positive detections rather than persistent false positives.

Given these insights, we determine that this rule was performing as 
intended, and our detection engineering efforts would be better spent 
elsewhere. This example highlights why mean alert volume alone is 
insufficient — without additional context like variability scoring and rule 
version analysis, tuning efforts may be misguided, leading to unnecessary 
changes that could weaken detection efficacy.

Operational performance metrics drive continuous refinement of detection 
coverage, ensuring our detection engineering efforts remain data-driven 
and adaptive. By automating rule tuning thresholds and analyzing false 
negatives, we proactively close detection gaps and optimize rule fidelity. 
While we highlighted key examples — such as rule variability, malware 
efficacy, and alert distribution trends — these represent just a subset of the 
broader set of metrics we use to assess and refine detection performance. 
The success described in these metrics is a direct result of our detection 
engineering processes, including how we address false positives and our 
methods of prioritization for rule tuning. These measurements collectively 
provide a structured approach to improving detection accuracy and our 
users’ experience by reducing unnecessary alert volume.

3.1 Operational performance analysis

https://www.elastic.co/guide/en/security/current/rules-ui-create.html#create-new-terms-rule
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3.2 Strategic business objectives and results

3.2
Strategic business objectives and results

We track strategic objectives to ensure our work not only improves day-to-
day detection performance but also aligns with broader business goals. By 
measuring OKRs, we assess the user impact, operational efficiency, and 
efficacy of our detection engineering efforts. There is overlap between 
what our day-to-day performance metrics and OKRs measure. However, 
our OKRs are measured alongside the work of other teams as an indicator 
of our collective progress toward company-wide strategies; the primary 
strategy being to build a security product that improves the day-to-day 
value for our users.

 
Keeping endpoint alert volume below 1%
One of the main pain points that security teams tackle with prebuilt 
security content is that broad detection logic can become too noisy in 
certain environments, leading to alert fatigue. More importantly, Endpoint 
Protection alerts can cause direct disruptions by terminating processes, 
quarantining files, etc. With this in mind, one of our core objectives is 
ensuring that fewer than 1% of hosts generate Endpoint alerts. This serves 
as a key false-positive indicator and measures impact on our users’ day-to-
day experience with alert volume.

To ensure accuracy, we calculate this daily and average it monthly, reducing 
data skew from short-lived hosts. Breaking it down by protection type 
(malware, memory, behavior, ransomware) and operating system allows us 
to pinpoint areas needing improvement.

A high percentage of affected hosts may signal overly broad detection 
logic, excessive noise, or misconfigurations. Keeping this number below 
1% ensures high-fidelity detections. This threshold was decided by our 
subject matter experts as a realistic expectation for the number of true 
positive alert instances at any given time. Over the last year, we’ve stayed 
well below this threshold each month across each OS. Our day-to-day 
processes discussed in section 3.1 allow us to maintain these results and 
ultimately support our users’ experience by reducing unnecessary alerts.
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Figure 7: Monthly percentage of hosts with Endpoint Behavior alerts, Oct 2023 - Oct 2024

Percentage of Hosts with Endpoint Alerts
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Releasing both SIEM Detection and Endpoint Protection rules within a 14-
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In addition to providing these tests for internal use, we have 
migrated all our RTAs to Cortado (Consolidated RTAs), a public repo 
we share with the community as an easy way to test our ruleset!

the community at large through our Detection Rules and Protections 
Artifacts repositories.

Maintaining 100% RTA coverage of endpoint 
behavior rules
One of the ways we automate testing our ruleset is through Red Team 
Automations (RTAs). RTAs are Python scripts that either reference a 
malware sample hash that exhibits threat behavior we aim to detect or it 
emulates the attacker behavior through code. RTAs provide a simple way 
to verify that detection rules are generating the expected alerts for our 
SIEM and Endpoint Protection rules. 

Due to the difference in design, we hold a different standard for testing 
each ruleset. For Endpoint Protection rules, our goal is to have 100% RTA 
coverage. Meaning when a new rule is created, it is created alongside 
an RTA that provides test data to verify the rule triggers on expected 
behavior. This additional testing ensures protection rules are valid and 
remain high fidelity across multiple user environments.

RTAs serve a larger purpose beyond new rule development. We use them 
to regression test rules to validate new features added to the SIEM or 
endpoint agent and any modifications based on rule tuning, as well as for 
maintenance. This process can become time-consuming with hundreds 
of rules to test across multiple Stack versions, but RTAs help to automate 
the process. Additionally, sometimes we get requests for sample data, 
or methods to generate suspicious events to baseline configurations. 
RTAs are a quick and easy way to provide this data in support of other 
initiatives at Elastic. 

While we highlighted key examples, these represent just a subset of 
the OKRs we monitor. Together with our operational metrics, these 
OKRs provide a comprehensive framework for evaluating our detection 
engineering efforts and measure how effectively we provide value to 
our customers.

3.2 Strategic business objectives and results

https://github.com/elastic/cortado
https://github.com/elastic/detection-rules
https://github.com/elastic/protections-artifacts
https://github.com/elastic/protections-artifacts


C
on

si
de

rin
g 

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

31

Part 4

Considering threat reports and 
looking ahead 

Creating an efficient product requires strategic planning, so we spend 
a lot of time discussing our detection engineering plans. There are two 
key spaces that affect these discussions: the past and the future. Threat 
reports like Elastic’s annual Global Threat Report are crucial for us as a 
strategic validation tool, highlighting which threats are most prevalent 
across Elastic Security’s global telemetry.

4.1
Partnering with the Elastic Global 
Threat Report 

The Elastic Global Threat Report (GTR) and our detection engineering 
efforts are deeply interconnected, each reinforcing the other. The alert 
telemetry that powers the GTR is influenced by the detection and protection 
rules we create, capturing real-world adversary behaviors across cloud, 
endpoint, and network environments. In turn, the threat trends surfaced in 
the GTR provide us with a broad, data-driven perspective, validating existing 
detection coverage and helping to direct our efforts.

One of our core responsibilities as detection engineers is to respond rapidly 
to in-the-wild threats. We continuously track emerging attack techniques, 
and much of our work involves adapting to real-world adversary behaviors 
as they happen. The data from the GTR helps us identify gaps, fine-tune 
detections, and prioritize research areas that will have the greatest impact 
on our customers. 

The 2023 Elastic Global Threat Report 
While not exhaustive, this section provides a retrospective on our responses 
to several of the key threat trends identified in the 2023 GTR.

https://www.elastic.co/resources/security/report/global-threat-report
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4.1 Partnering with the Elastic Global Threat Report 

Forecast: “Defense Evasion is going to remain the top investment, and tam-
pering will supersede masquerading”

Adversaries continue to prioritize Defense Evasion, employing methods such 
as System Binary Proxy Execution and Masquerading techniques. In response, 
we have significantly enhanced detections across all operating systems. Out 
of 336 new EDR rules, 152 were focused on Defense Evasion, accounting for 
approximately 45% of detection efforts related to Endpoint Protection Rules. 
Out of 256 new SIEM rules, 67 were focused on Defense Evasion, representing 
around 26% of detection engineering efforts for SIEM Detection Rules.

These rules covered a broad range of evasion techniques beyond 
Masquerading, with the top being:

	� Process Injection
	� System Binary Proxy Execution

	� Highjack Execution Flow
	� Impair Defenses

The importance of Defense Evasion

As detailed in Unveiling Malware Behavior Trends, our large-scale analysis 
of behavior trends from over 100,000 Windows malware samples identified 
Defense Evasion as the most frequently observed adversary tactic. This 
tactic triggered 189 distinct detection rules, accounting for nearly 40% of all 
Windows rules in our library. The high use of Defense Evasion techniques in 
real-world attack patterns across various malware makes it a top priority in 
our detection engineering efforts for Windows.

The primary techniques observed in this breakdown included Code 
Injection, Defense Tampering, Masquerading, and System Binary 
Proxy Execution.

Specific coverage efforts: Linux Defense Evasion research and 
rule development

We analyzed numerous techniques for evasion on Linux such as process/pid 
hiding, encoding and decoding payloads, and the use of GTFOBins. 

The outcome of this research included increased detection coverage for 
techniques within the following categories: 

https://www.elastic.co/security-labs/unveiling-malware-behavior-trends
https://gtfobins.github.io/
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	� GTFOBin SO loading

	� GTFOBin reverse & bind shells

	� GTFOBin proxy execution

	� Busybox evasion techniques

	� Dynamic Linker modifications

	� Curl/Wget downloads

	� SSL & CA certificates

	� Disabling/removing protections 
(e.g., firewalls, AppArmor, Auditd, 
SELinux) and more. 

This was a broadly scoped effort but is still not exhaustive. It helped us to 
identify gaps that will need to be addressed in the near future like rootkits, 
Process Injection techniques, and web shell usage. 

Forecast: “The malware-as-a-service (MaaS) model will become 
more popular”

The increasing popularity of the Malware-as-a-Service (MaaS) model has 
abstracted the complexities of cyber intrusions, enabling less experienced 
threat actors to launch more sophisticated attacks. As mentioned in 
previous sections, malware analysis and malware feed detection efficacy is 
baked into our day-to-day detection engineering efforts, making this a focus 
area across all endpoint platforms. Additionally, we’ve devoted significant 
effort toward detecting commonly used scripts, tools, and malware 
behaviors in support of our broader effort to tackle less experienced actors 
using MaaS platforms.

Specific coverage efforts: macOS infostealer YARA research and 
rule development

We conducted an in-depth analysis of macOS malware samples collected 
from the macOS Malware Collection by Objective-See and various stealer 

4.1 Partnering with the Elastic Global Threat Report 

https://github.com/objective-see/Malware
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variants (e.g., MacStealer, MetaStealer, RealstStealer) discussed in blogs 
from SentinelOne and Kandji. Our analysis focused on identifying unique 
characteristics and hardcoded behaviors of each sample, which could be 
used to create YARA rules for future detection.

Key findings and actions included:

	� Commonality detection: We identified that many stealer samples 
encoded AppleScript in various ways (Hex, XOR, Base32, etc.). We 
developed a YARA rule to detect these encoding methods, achieving a 
100% detection rate on the stealer samples with zero false positives. This 
rule was run as a live hunt for over a week, yielding only true positive 
detections and uncovering previously undetected stealer samples.

	� Specific rules for variants: For MetaStealer and RealstStealer, we 
created specific YARA rules.

	� General rule for other samples: For samples that did not encode 
AppleScript or were not Rust or Go-based, we created a rule to detect 
the presence of six or more crypto wallet extension IDs. This rule also 
ran as a live hunt for several weeks, resulting in zero false positives 
and numerous true positives, including the detection of previously 
undetected samples reported on social media.

These rules have provided a robust foundation for detecting the majority 
of macOS stealers and will be continuously updated to account for new 
variations or samples.

Forecast: “Cloud credential exposure will be a primary source of data ex-
posure incidents”

As highlighted in section 2.1, we have significantly increased our detection 
engineering efforts for Cloud and SaaS platforms over the past year. Given 
the increasing reliance on these platforms and the prevalence of credential 
abuse, this area has become a critical focus for us. We developed 23 
new SIEM rules related to Cloud Credential Access techniques, spanning 
platforms like AWS, Okta, Microsoft 365, and endpoint environments to 
account for cross-platform threat behavior.

Specific coverage efforts: Microsoft 365

Our efforts related to Microsoft 365 Credential Access threats focus on 
several key areas to identify and mitigate potential attack vectors.

4.1 Partnering with the Elastic Global Threat Report 



C
on

si
de

rin
g 

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

35

By focusing on these areas, we ensure a comprehensive approach to detecting 
and mitigating credential access threats within Microsoft 365 environments.

 
The 2024 Elastic Global Threat Report
While the data sourced for this SDEE is only reflective of our response to the 
2023 GTR, there are some interesting trends in our most recent Global Threat 
Report that we’ve started to address and will continue to focus on in the 
coming year.

For example, the 2024 Global Threat Report reported the following:

	� Credential dumping and abuse: We implement rules to detect attempts 
to access and dump credentials from sensitive processes and files, 
such as monitoring for the creation of Kerberos ticket dump files and 
unauthorized access to the LSASS process.

	� Unauthorized access and privilege escalation: Our monitoring includes 
identifying activities that suggest attempts to gain unauthorized access 
or escalate privileges, which can lead to credential theft. This involves 
detecting suspicious processes and bypass attempts of security controls 
like User Account Control (UAC).

	� Persistence mechanisms: We track various Persistence mechanisms 
that attackers might use to maintain access to compromised systems, 
which can facilitate ongoing credential access. This includes monitoring 
for registry modifications and the creation of malicious Persistence files.

	� Exploitation of legitimate tools: We keep an eye on the misuse of 
legitimate tools and applications that can be leveraged to access 
credentials. This involves detecting unusual or suspicious usage patterns 
of tools like PowerShell and HTML applications.

	� Windows #1 tactic → Defense Evasion
	� Linux #1 tactic → Persistence
	� macOS #1 tactic → Execution
	� Cloud #1 tactic → Credential Access

This distribution reinforces the need to differentiate our focus areas 
across platforms in order to address their unique threat landscapes. 

4.1 Partnering with the Elastic Global Threat Report 
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Figure 8: Distribution of new rules by tactic from October 2024 to March 2025

New SIEM and EDR Rules

While our approach to SIEM rules allows for broader tactic scope, our EDR 
rules have heavily focused on high-confidence tactics that are strong 
indicators of an active threat. Primarily Execution, Defense Evasion, C2, 
and Persistence.

Additionally, the team is focused on the evolution of the generative AI 
landscape. Attackers are utilizing this technology in various ways and our 
team will continue to monitor these emerging techniques — especially 
sophisticated phishing campaigns. However, we also intend to watch how 
generative AI is benefiting defenders. 

These benefits have been seen internally, with both Elastic’s foundation 
in Search AI as well as our use of generative AI to produce investigation 
guides for our SIEM rules — an important yet time-consuming task. By using 
generative AI to analyze individual rule contexts alongside standardized 
guidance, we can create investigation guides more quickly. This enhances our 
ability to provide user value while freeing us to conduct more threat research. 
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4.2 Looking forward

4.2
Looking forward

As the cybersecurity threat landscape continues to grow in complexity, 
our detection engineering team has undertaken a comprehensive review 
to outline our goals for the upcoming year. We consolidated insights from 
team discussions, focusing on priority threats, detection gaps, process 
improvements, and the incorporation of AI. 
 
Priority threats and adversary behaviors
With regard to our detection engineering efforts, there are several areas 
that we are keeping a close eye on as the year unfolds. Our intention with 
this section is to show you how we plan to adapt to recent threat trends. 
Maybe you can beat us to it?
 
Artificial intelligence (AI)

The rapid advancement and adoption of AI technologies have introduced 
new vectors for adversarial attacks, making it a significant area of concern. 
Over the next year we will enhance our AI threat detection coverage by 
focusing on the following:

	� Mapping AI threats using frameworks such as MITRE ATLAS: Helps us 
understand the TTPs used by adversaries.

	� Developing robust detections for adversary use of AI: Identifying 
and mitigating AI-enabled attacks (e.g., the use of GenAI to create 
sophisticated phishing emails, prompt-based injections, and jailbreaking).

	� Monitoring identity access to LLM APIs and analyzing LLM responses: 
Monitoring cloud-based LLM model API calls for suspicious access 
attempts and malicious outputs.

Both attackers and defenders are continuously pushing the limits of what is 
achievable, and it is our mission at Elastic to comprehend these ever-shifting 
dynamics. We recognize that the threat landscape is not static; it is a fluid 
and adaptive environment where new threats and vulnerabilities can appear 
at any time. Therefore, we remain agile and responsive to emerging trends, 
constantly refining our detection capabilities to ensure that our users are 
well-protected against the full spectrum of threats, both present and future.
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	� Developing heuristics for identifying suspicious prompt structures: 
Analyzing AI-generated content for signs of manipulation.

	� Capturing endpoint activity related to LLM interactions: Monitoring 
local hosts for unusual activities related to LLMs.

 
To address these growing concerns, we will build upon existing Prompt 
Injection detections and enhance the logging of AI model activity across 
cloud platforms.

 
Endpoint security

Endpoint security will remain a priority for our team over the next year. While 
some focus areas will overlap across operating systems, we will differentiate 
our efforts to address the unique threat landscape of each OS and the 
differing maturity levels of each ruleset.

	� Windows: Adversaries often exploit the openness of our detection logic 
to evade us. For example, we observed some C2 frameworks attempting 
to bypass our existing detections by mimicking false positive exclusions 
for our rules. Some have also been observed using advanced TTPs (e.g., 
memory guard protection) to prevent memory scanning. We’ll attempt to 
counter this by:

	‒ Duplicating crucial Endpoint Protection rules as SIEM Detections 
with broader conditions: With fewer exclusions, this will help catch 
more sophisticated evasion techniques.

	‒ Make existing detections more aggressive or resilient:  
Ensure that existing detections are robust enough to identify  
and mitigate advanced attempts to bypass defenses. Key  
areas of focus include Process Injection, Credential Access,  
and Initial Access.

	� Linux: Continue to address Persistence mechanisms, prioritize Evasion 
techniques, enhance YARA signature development, and improve 
detections for common attack vectors. More specifically:

	‒ Address evasion via exposed rule exclusions: Similar to Windows, 
many Linux EDR rules rely on excessive exception lists, which 
attackers can exploit to evade detection. We will leverage SIEM 
Detection rules to create similar rules with fewer exceptions to 
combat this.

4.2 Looking forward
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	‒ Enhance malware signature detection via YARA signatures: While 
behavior-based detection methods can account for a broad range 
of malware behaviors, there is still an important place for signature 
based detections that provide another layer of defense against known 
malware. We will develop new YARA signatures specifically for Linux 
malware and adversary tooling. 

	‒ Improve detections for brute-force attacks and public-facing 
service exploitation: These remain common attack vectors 
for botnets, leading to deployments of crypto miners, use of 
compromised systems for pivoting, and other threats. DNS and 
reputation-based lookup services will be leveraged to help close  
this gap.

	� macOS: For macOS we will shift focus to enhancing our SIEM ruleset, 
as most of our efforts thus far have been for Endpoint Protection rules. 
However, there are some considerations in doing this that we want  
to explore.

	‒ Supplement threat research with more telemetry: A large 
segment of the community utilizes our SIEM rules without installing 
our Endpoint Protection rules. By converting some of our macOS 
protections to SIEM, we will enable a larger community of researchers 
and funnel back more telemetry for our own continued research. This 
comes with an increased need to balance alerts across SIEM and 
Endpoint, and our team is committed to minimizing duplicate alerts. 

By addressing these areas, combined with our ongoing advocacy for 
enhanced Elastic capabilities, we will significantly bolster the maturity and 
effectiveness of our endpoint rulesets.

 
Cloud and SaaS security

Adversaries are increasingly targeting cloud environments and, as 
mentioned in part 2, we increased our focus on cloud and SaaS over the last 
year with a particular focus on AWS and Okta. Moving forward, we plan to 
expand to other cloud and SaaS platforms and continue to concentrate our 
efforts on key areas within these core attack surfaces:

	� Securing compute and containerized workloads: Tracking access 
to compute and containerized workloads, identifying vulnerabilities 

4.2 Looking forward
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and misconfigurations, and detecting container breakouts and 
cryptominer distribution by monitoring logs from both local and cloud-
managed instances.

	� Securing APIs and data workflows: Monitoring API and network flow 
logs for anomalies, and improving detections for unauthorized data 
storage access by identifying anomalous CRUD (Create, Read, Update, 
and Delete) operations and potential exfiltration.

	� Detecting identity and access management (IAM) and credential 
abuse: Monitoring for suspicious IAM activities and use of compromised 
credentials by incorporating entity analytics and contextual awareness 
into our detection methods. Identifying anomalies in authentication and 
authorization workflows (e.g., OAuth, SAML, OIDC).

	� Building context-aware detections: Enhancing detection accuracy 
by correlating cloud-based threats with endpoint footprints and using 
context-aware capabilities (e.g., CSPM, CNVM, asset inventory, and risk 
scores) to fine-tune detection logic.

	� Researching cloud-focused threat actors: Tracking and researching 
adversarial behaviors and footprints from groups targeting cloud and 
SaaS environments. 

In order to achieve these goals, we must improve containerization auditing, 
enhance our emulation and threat modeling processes, and fine-tune 
existing detections for core API services and data workflows.

 
Innovations in rule development enablement
We are constantly searching for ways to optimize our rule development 
lifecycle. In this section, we want to share some of the key areas of 
innovation we plan to address as the year unfolds. 

 
Process improvements

There are many ways we can improve our rule development process to the 
benefit of both our detection engineers and our users, including:

	� Automating RTA coverage using known/recent hashes: Right now 
the RTA development process is completely manual. By using known 
malware hashes to trigger certain rules, we will greatly reduce rule 

4.2 Looking forward
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developer burden while maintaining our testing standards. 
	� Adjusting detection rule severity scores to make alerts more 

meaningful: We will explore the use of factors like asset criticality, user 
behavior history, and AI-driven risk analysis to determine rule severity 
scores either globally or per-environment. 

	� Tracking tuning efforts over an individual rule’s lifetime: This will help 
us determine the value of extensive rule tuning efforts when compared 
to a rule’s ability to capture real-world threats like VirusTotal malware 
samples and ensure our efforts are placed on the most impactful rules 
for users.

Contextual data and entity analytics

Similar to our goals in cloud, integrating Entity Analytics for targeted data 
collection will enable context-aware detections across endpoint platforms. 
These represent ideas for capabilities that we will advocate for and hope to 
explore over the next year, like:

	� Collecting data on installed patches, user attributes, and hardening 
status: This will help us utilize the security posture of an environment as 
part of detection criteria.

	� Specifying detection conditions based on user-specific technologies 
and attributes: This will improve the relevance and accuracy of our 
detections, making them more context-aware.

AI and machine learning assistance
Our team found the discussion around the potential for AI and ML to 
enhance our rule development process particularly engaging. While specific 
implementations are still exploratory and do not reflect Elastic’s official 
product roadmap, we are eager to investigate the possibilities of AI and 
ML-driven advancements in areas such as dynamic threshold adjustment, 
false positive reduction, and rule tuning over the coming year and beyond, 
including:

	� Using AI to dynamically adjust detection thresholds and suggest 
exceptions: Reducing false positives and improving the accuracy of our 
detections.

4.2 Looking forward
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	� Generating False Positive (FP) reports: Quickly identifying and 
addressing issues with our detection logic, and potentially providing us 
with recommended rule ideas.

	� Leveraging Elastic AI Assistant for Security: Applying rule tunings to 
filter out user-suggested false positives, checking against telemetry and 
malware hashes, and creating drafts for rule changes.

	� AI for malware analysis: Utilizing AI for static binary analysis and 
potentially dynamic malware analysis through a cloud sandbox running 
extensive ML models on binaries that seem to be suspicious.

	� Rescanning suspicious malware samples: Using AI models to rescan 
suspicious low true positive malware samples in VirusTotal and other 
malware databases to find novel malware.

	� GenAI for telemetry analysis: Implementing workflows for saving 
interesting alert telemetry, parsing it daily with an LLM, and sending 
Slack messages for notable events.

	� Automated alert grouping and summarization: Utilizing GenAI to 
automatically group and summarize similar alerts within the UI, provide 
explanations for noisy patterns, and suggest tuning options.

We’re incredibly enthusiastic about the strategic direction we’ve outlined 
for our detection engineering efforts in the coming year. Our roadmap 
prioritizes proactively addressing emerging threats, bridging detection gaps, 
and harnessing the transformative potential of AI and automation to optimize 
our rule development. We’re also particularly excited to champion innovative 
ideas for Elastic capabilities and push the boundaries of what’s possible.

4.2 Looking forward
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Conclusion

The challenges of today’s threat landscape are immense — far too big for 
any one company to solve. Elastic approaches these problems by fostering 
community, whether it’s encouraging discussion or running our detection 
bug bounty program. These efforts create positive changes to the threat 
landscape; but even more importantly, they continue the conversation.

In order to demystify the threat landscape, it must be discussed 
thoroughly. How we approach it, break it down, create protections for it. 
Yes, this is exploring threats and actor behavior, but it is also exploring 
our own efforts and calling the community to hold us accountable. We’re 
continuing the conversation on Elastic Security Labs, and we’ll keep 
making Elastic Security the best it can be. 

Some companies create products to make revenue, we’re tuning a security 
tool to make it the most effective version possible. To give our users one 
less thing they have to put resources into. 

There’s no secret to delivering robust and reliable security capabilities that 
meet our user’s needs, it’s just a lot of hard work and planning. Seeing 
what the threat landscape throws at us and adapting. Those adaptations 
create improvements, and those benefit everyone. 

So whether you’re a veteran detection engineer, a security tool creator, 
or you downloaded this report to take a break, we’re glad that you came 
by. We’re glad that you participated in the ongoing demystification, that 
you chose to spend some of your limited time with us. We’re excited to 
collaborate with you, directly or indirectly, on making the threat landscape 
easier to navigate. 

https://x.com/elasticseclabs
https://www.elastic.co/security-labs/behavior-rule-bug-bounty?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
https://www.elastic.co/security-labs/behavior-rule-bug-bounty?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
https://www.elastic.co/security-labs?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
https://www.elastic.co/security?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
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