
2025 State
of Detection
Engineering
at Elastic

Table of contents

Introduction 02

Detection engineering in practice 03

Internal metrics and evaluation 22

Considering threat reports and looking ahead 31

Conclusion 43

Enhancing Elastic Security 11

In
tro

du
ct

io
n

2

Introduction

The global threat landscape is dynamic, reactive, and overwhelming. As
threat actors launch attack after attack, they force security teams to shift
their attention and resources on a regular basis. The best way to address,
and even preempt these threats, is detection engineering — a practice that
teams rarely have enough resources for.

Effective detection engineering demands a detailed understanding of the
attack surface and tools in an organization. Security teams must rely —
sometimes exclusively — on their tools to make up for gaps in resources.
In an industry that is so demanding of expertise, security vendors have an
obligation to deliver and continuously innovate upon quality products that
alleviate security teams from a siloed approach.

Elastic Security Labs remains dedicated not only to innovating upon
our Elastic Security solution with research and protections, but also
empowering the security community at large by driving discussions and
sharing practices. This report will give our users an in-depth look at how we
create, maintain, and assess our rulesets within Elastic Security, providing
broader context into detection engineering and how teams may benefit. Our
expertise is made available for the entire security community, regardless of
familiarity with or patronage of our technology.

The 2025 State of Detection Engineering at Elastic explores a full year of
our detection engineering efforts: October 2023 - October 2024. This time
frame was chosen to incorporate our work following the 2023 Elastic Global
Threat Report and elicit enough data for patterns to emerge.

As such, the way we manage detection engineering for the Elastic Security
solution will look different from your own practices, but we hope that by
sharing what we do, we set the stage for an in-depth discussion on the
practice of detection engineering. We hope that you’ll join us in
this conversation.

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

3

Part 1

Detection engineering
in practice

The State of Detection Engineering at Elastic begins where we begin: with
our rulesets. Elastic Security Labs maintains SIEM Detection and Endpoint
Protection rulesets. Our SIEM Detection rules cover a broad range of
threats across operating systems and 3rd party platforms like AWS, GitHub
and Kubernetes. Our Endpoint Protection rules prevent ransomware and
malware, detect advanced threats, and arm responders with vital context
using our endpoint agent.

Regardless of the ruleset, there are many different strategies for developing
rules. We’ll begin by sharing how we utilize real-world threat campaigns
— sometimes exposed by our very own colleagues! — to shape our focus.
From there, we’ll transition into our proactive designs for future-proofing
these rules: our development lifecycle. We’ll explore how a multi-pronged
approach to detection engineering, combining real-world threat analysis and
robust rule development, can enhance threat detection capabilities.

1.1
Real-world threat analysis

Elastic’s detection engineering strategies are deeply influenced by the
retrospective analysis of real-world threat behavior, security telemetry from
triggered alerts, and detonated malware samples. This hindsight analysis
and historical data help us to refine our existing detections, develop new
rules in response to evolving adversaries, and identify previously undetected
threats. We’ll highlight a couple key examples of our approach.

The CUPS vulnerability
On September 26, 2024, security researcher Simone Margaritelli
(@evilsocket) disclosed a group of critical vulnerabilities in CUPS (Common
Unix Printing System) utilities. These vulnerabilities — CVE-2024-47076,

https://github.com/elastic/detection-rules
https://github.com/elastic/protections-artifacts
https://github.com/elastic/protections-artifacts
https://www.cve.org/CVERecord?id=CVE-2024-47076

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

4

1.1 Real-world threat analysis

Our team:
Reviewed available
threat intelligence
to fully understand
the exploit chain.

Obtained a proof of
concept (PoC) to simulate
real-world exploitation.

Tested the PoC in a controlled
test environment with
vulnerable endpoints to
determine detection strategies.

CVE-2024-47176, CVE-2024-47175, and CVE-2024-47177 — enabled
unauthenticated remote code execution (RCE) on widely used UNIX-based
systems, including most GNU/Linux distributions, BSDs, ChromeOS,
and Solaris.

In response, we promptly assembled our team of detection engineers and
researchers to methodically analyze the emerging threat. Prioritizing user
protection, we temporarily redirected focus from other projects to conduct a
thorough assessment of the vulnerabilities.

We focused on two primary attack scenarios:

1.	 Using living-off-the-land (LOL) techniques to establish a reverse shell
2.	 Retrieving and executing a remote payload to achieve RCE

While emulating these attack scenarios, we assessed the impacts on
our system and analyzed activity logs for process activity and command
execution patterns. These insights informed our detection strategy and
remediation steps for customer guidance.

By leveraging our streamlined processes for rule development, deployment,
and content publishing, we delivered detection coverage and public
guidance for the community. While part of the team worked on writing
and validating detection rules, others documented the findings for an
informative article on Elastic Security Labs — which included remediation
recommendations. Rules like Cupsd or Foomatic-rip Shell Execution, which
detects shell executions from the foomatic-rip parent process, captured all
33 of our PoC attempts.

Local Privilege Escalation on Windows
Last March, our team examined publicly disclosed zero-day vulnerabilities
targeting the Windows Common Log File System (CLFS) and Desktop
Window Manager (DWM) Core Library. We analyzed exploitation methods to
identify behavioral patterns indicative of Privilege Escalation attempts. By

https://www.evilsocket.net/2024/09/26/Attacking-UNIX-systems-via-CUPS-Part-I/
https://github.com/RickdeJager/cupshax/blob/main/cupshax.py
https://github.com/RickdeJager/cupshax/blob/main/cupshax.py
https://www.cve.org/CVERecord?id=CVE-2024-47176
https://www.cve.org/CVERecord?id=CVE-2024-47175
https://www.cve.org/CVERecord?id=CVE-2024-47177
https://www.elastic.co/security-labs/cups-overflow
https://www.elastic.co/docs/reference/security/prebuilt-rules/rules/linux/execution_cupsd_foomatic_rip_shell_execution
https://manpages.ubuntu.com/manpages/plucky/en/man1/foomatic-rip.1.html

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

5

focusing on the dynamic behaviors of these exploits — such as the creation
of BLF files followed by unexpected system-level activities — we developed
a resilient detection strategy for these complex vulnerabilities that included
both behavioral-based detection rules and signature-based YARA rules.

Specifically, we designed high-level behavioral detections by correlating
file manipulation events involving clfsw32.dll APIs (CreateLogFile and
AddLogContainer) with subsequent unexpected system integrity-level
process activity (i.e. spawning a system child process, API call, file, or
registry manipulation with system privileges). In parallel, we leveraged YARA
to hunt for unsigned Portable Executable (PE) files that import the same
user mode APIs and an atypical number of functions from clfsw32.dll.
While targeted detections for highly exploited Windows components like
CLFS and win32k provide valuable coverage, detecting Privilege Escalation
attempts across a broad range of exploits requires a strategy that extends
beyond individual vulnerabilities.

Adversaries frequently reuse core exploitation techniques across
different vulnerabilities. As a result, investing in behavior-driven
detection mechanisms — such as identifying Kernel address space
layout randomization (KASLR) bypass attempts, token swapping, and
PreviousMode abuse — offers wider coverage and long-term resilience
against evolving privilege escalation techniques. More on how we explored
these samples can be found in In-the-Wild Windows LPE 0-days: Insights &
Detection Strategies.

Figure 1: We can also look for unusual activity in DWM by baselining child processes and file activity

1.1 Real-world threat analysis

https://github.com/search?q=repo%3Aelastic%2Fprotections-artifacts%20CLFS&type=code
https://yara.readthedocs.io/en/stable/gettingstarted.html
https://www.elastic.co/security-labs/itw-windows-lpe-0days-insights-and-detection-strategies
https://www.elastic.co/security-labs/itw-windows-lpe-0days-insights-and-detection-strategies

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

6

Based on our telemetry visibility, dwm.exe rarely spawns legitimate
child processes. Figure 1 is an example of dwm.exe spawning cmd.
exe as a result of exploitation. To further elevate privileges, the
shellcode triggers a logoff by executing the shutdown /l command,
which triggers the execution of the LogonUI.exe process running
as a SYSTEM user. The two main detection points here occur when
dwm.exe drops a PE file to disk and when LogonUI.exe loads a
DLL, with the call stack pointing to dcomp.dll — an indicator of
marshaling/unmarshaling Direct Composition objects.

Retrospective detection engineering is a cycle of research, analysis,
validation, and adaptation. It goes beyond developing better detections —
it depends on continuous engagement with exploit and vulnerability
research. Engineers must understand not just how an exploit works, but
how its effects manifest within system telemetry across diverse threat
scenarios. By closely examining in-the-wild threat behavior, analyzing
past incidents for detection gaps, and leveraging public repositories
like VirusTotal to validate and refine detection logic, we ensure that our
defenses remain adaptable and forward-looking.

1.2
Robust rule development

Our detection engineering strategy, while rooted in retrospective analysis,
has evolved to be future-focused in nature. We have developed techniques
to automate rule schema validation, refine our rule development process,
and proactively detect emerging threats. This approach shapes everything
from our internal rule deployment processes to novel uses of industry
frameworks — ultimately ensuring that our detection capabilities evolve in
step with a changing threat landscape.

Rule validation and detections-as-code
A major part of the work we do as detection engineers is maintaining our
rules through a lifecycle. We’ve implemented automated query and rule
validation into our Continuous Integration (CI) workflow in GitHub. We

1.1 Real-world threat analysis

https://github.com/elastic/protections-artifacts/blob/72fd8cad90189e9d145d22eb3d4fee2fe3d5902f/behavior/rules/privilege_escalation_unusual_desktop_window_manager_child_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/privilege_escalation_potential_privilege_escalation_via_logonui.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/privilege_escalation_potential_privilege_escalation_via_logonui.toml

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

7

1.2 Robust rule development

automatically validate rule syntax across multiple stack and integration
versions, test detection efficacy against sample datasets, and ensure
rules are fully functional before deployment. This is a process we have
done for years across all of Elastic’s supported query languages, and we
recently added Elasticsearch Query Language (ES|QL) — Elastic’s piped
query language — into many of these routines. We committed to doing
the same with ES|QL because automated rule validation reduces the risk
of introducing noisy or inaccurate rules into production environments for
our users. Furthermore, the streamlined validation process helps our team
iterate faster by closing the feedback loop between rule creation, testing,
and deployment.

In addition to query and rule validation, we’ve always applied a
detections-as-code (DaC) approach to rule management. DaC allows
detection rules to be treated as software artifacts, subject to the same
robust development practices used in traditional software engineering.
Key actions here include automated testing, peer review, and version
control. These help catch errors and inefficiencies before they impact our
users and enable better collaboration and consistency across environments.
Version control at the rule level streamlines updates allowing individual rule
changes to be tracked and rolled back if necessary.

There has been significant refactoring and updating to decouple
components originally designed for internal use only, to allow
for adoption by the community and users. For more guidance,
Detections as Code Reference describes principles to adopt a DaC
approach to Elastic Security rule management.

Together, these practices allow us to manage our ever-growing ruleset
at scale, accelerate our internal release cycles, minimize disruptions from
erroneous rules, and facilitate a more agile response to evolving threats.

Maturing rules with the DEBMM
Even with advanced CI and DaC, detection engineering can suffer from
misaligned priorities and an inconsistent approach to rule maturity.
To systematically address these pitfalls, we introduced the Detection
Engineering Behavioral Maturity Model (DEBMM) — a universal model

https://www.elastic.co/what-is/query-language#experience-elasticsearch-query-language-esql
https://www.elastic.co/guide/en/elasticsearch/reference/current/esql.html
https://www.elastic.co/security-labs/dac-beta-release
https://dac-reference.readthedocs.io/
https://www.elastic.co/security-labs/elastic-releases-debmm
https://www.elastic.co/security-labs/elastic-releases-debmm

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

8

Refine
Repeat,
Mature

Tier 0:
Foundation

Detection
Engineering

Behavior
Maturity Model

Tier 1:
Basic

Tier 4:
Expert

Tier 3:
Advanced

Tier 2:
Intermediate

Figure 2: The Detection Engineering Behavior Maturity Model

used to assess and mature processes and behaviors of security teams.
Spanning five maturity stages (Foundation, Basic, Intermediate, Advanced,
and Expert), the DEBMM provides benchmarks for behaviors like telemetry
integration, rule management, and continuous refinement based on
adversary insights.

We are currently using this model to build a framework for how we track
the maturity of our rulesets, starting with Azure. While we have a good set
of standard rules available, we know this ruleset needs some attention.
Our assessment began with an acknowledgement of its current state: not
actively maintained, with sparse documentation, and thus initially assessed
as Tier 0. Despite this, the existence of standard rules from community
contributions and Elastic researchers provided a foundation for evaluation.

The assessment focused on four key criteria: structured rule development
and management, creation and maintenance of detection rules, roadmap
documentation, and threat modeling. Both qualitative and quantitative
measures were evaluated, revealing areas where existing practices, such as
schema validation and peer reviews within the Detection Rules repository,

1.2 Robust rule development

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

9

provided some maturity, while other areas, like regular rule creation and
updates, lacked consistency. This process identified specific improvements
needed and led to the development of a detailed plan with prioritized tasks
to progress toward Tier 1 maturity.

Advancing rule development through proactive
threat hunting
While we dedicate substantial effort to building robust detections, we
recognize that alerting on malicious behavior is only one part of an effective
overall approach. Proactive threat hunting offers a deeper understanding of
an environment by uncovering tactics and anomalies that might otherwise
go unnoticed. Internally, we use a curated library of hunting queries, which
are routinely run against our alert telemetry clusters. When these queries
return potentially suspicious leads to our dedicated Slack channel, our
detection engineers investigate further. From there, we may refine existing
rules or develop new ones based on the patterns we discover.

Additionally, we share a public set of threat hunting queries alongside
our detection rules, giving the community a structured approach aligned
with the methods our team relies on. We view rules and hunting queries
as complementary: once a rule fires an alert, correlated hunting queries
can offer additional context or act as pivot points during incident triage.
Likewise, some hunting logic may capture potentially malicious behaviors
that don’t yet meet the threshold for a universal detection rule — but
still provide valuable insight for analysts. Our goal in publishing these
hunting queries is to enable other security teams to tailor them to their
own environments.

One notable example occurred in September 2024, when one of our
researchers spotted suspicious behavior in our Linux alert telemetry. Further
investigation revealed an active threat (later designated activity group
REF6138) had compromised a customer’s Linux server. By partnering with
our threat research team, we reverse-engineered the newly discovered
malware, created YARA signatures to detect the malware family, and
enhanced our behavioral SIEM and Endpoint Protection rules to cover its
unique adversary tactics, techniques, & procedures (TTPs); as described
under the MITRE ATT&CK framework. We also published a comprehensive
report, Betting on Bots, that detailed the campaign’s methods and provided
defense recommendations.

1.2 Robust rule development

https://github.com/elastic/detection-rules/tree/6d8cfda10f6fed9426336add8d2ac558416a805a/hunting
https://attack.mitre.org/resources/faq/
https://www.elastic.co/security-labs/betting-on-bots

De
te

ct
io

n
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e

10

Robust rule management processes and DaC provide the technical
backbone for efficiently deploying and managing detection rules, while
the DEBMM provides a systematic approach to consistently improve and
mature those rulesets. What sets Elastic apart is not just the introduction of
these tools, but how we strategically incorporate these elements into the
detection engineering lifecycle as an operational approach. Query validation
and CI workflows ensure precision at the foundational level, DaC enables
scalable rule management, and threat hunting delivers both enhanced
context and a proactive approach to threat detection. These future-proof
methodologies provide not just better tools but a smarter, more scalable
approach to detection engineering.

1.2 Robust rule development

11

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

Part 2

Enhancing Elastic Security

2.1
Integration enrichment

The detection capabilities of our SIEM solution are rooted in both Elastic’s
detection engine — which allows us to build out our rulesets — and the
diverse landscape of supported integrations. With more than 450 to choose
from, we can collect, visualize, and query any data from any source.

Over the past year we’ve significantly expanded our detection engineering
coverage by utilizing various integrations available within the Elastic Security
ecosystem and improving data sources within our endpoint agent. A key
enabling factor in these efforts has been Elastic’s commitment to developing
and enhancing both Elastic’s core protection tools — like the Elastic Defend
integration for our endpoint agent — and widely adopted third-party
platforms, such as AWS, Okta, and GitHub.

As detection engineers and security researchers, we collaborate with our
endpoint agent and integration developers to enrich existing data sources
with the most pertinent context required for effective threat detection. This
section of the SDEE will explore some of those enhancements and their
impact on detection engineering at Elastic.

Figure 3: Top 10 integrations used for new and tuned rules

Endpoint
651

Windows
345

System
130

AWS
CloudTrail
96

Okta
44

GitHub
21

Network
Traffic
10

Auditd
Manager
55

Microsoft
365
31

Kubernetes
12

https://www.elastic.co/integrations/data-integrations

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

12

2.1 Integration enrichment

We focused our efforts this year on a broad range of security topics related
to endpoint, cloud, and software-as-a-service (SaaS). As new threats
emerged, we emulated techniques with existing frameworks, detonated
malware, exploited new vulnerabilities, and created threat simulation
tools for internal use. These tools include Panix, a Linux Persistence tool
developed by Ruben Groenewoud, and SWAT, a Google Workspace red
teaming tool developed by Terrance DeJesus and Justin Ibarra. Both of
these are maintained by their creators, but are available for public use.
Let’s explore some of the integrations we’ve used this year, a few of the
enhancements made to those integrations, and the resulting detection
engineering outcomes.

Cloud and SaaS integrations
Cloud and SaaS was a major area of focus for us this year — 15% of new
and tuned rules were related to these platforms, with AWS CloudTrail and
Okta integrations accounting for nearly 70% of those rules.

Figure 4: Distribution of new and tuned rules for Cloud and SaaS integrations

AWS CloudTrail

Last year there were many cloud-specific enhancements made across the
Elastic ecosystem. To mature our largest existing cloud platform ruleset, we
comprehensively audited our existing AWS CloudTrail detection ruleset. The
goal of the audit was to look for areas of improvement in existing detection
logic, analyze alert telemetry to find tuning opportunities, update MITRE
tactic and technique assignments, and build new rules to fill coverage gaps.

AWS CloudTrail
96

Microsoft
365
31

Kubernetes
12

AWS
Bedrock
4

Azure
Activity
Logs
1

Okta
44

GitHub
21

Google
Workspace
5

Azure
Signin Logs
2

https://www.elastic.co/security-labs/primer-on-persistence-mechanisms
https://github.com/elastic/SWAT

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

13

When determining our current coverage, we took a couple of approaches.
First we researched the current threat landscape for Cloud, both generally
and specifically for AWS. Using resources like MITRE ATT&CK’s Cloud
Matrix, Wiz’s Cloud Threat Landscape database, and other recent cloud-
related breach reports, we compared what threat actors were doing to what
our ruleset was detecting. Then we looked at some of the most popular
cloud threat emulation tools, like Stratus Red Team and the AWS Cloud
Incident Response Team (CIRT) Workshops, compared those emulations
with our ruleset, and executed a strategic plan to fill in the gaps.

By October 2024 we had significantly improved the existing ruleset with
over 50 rule tunings, more than 40 new rules, and 17 threat hunting queries.
These rules uncover high-risk activities within AWS environments related to
compromised access keys, abused lambda functions, overly permissive IAM
policies, and more. We’ve continued regular maintenance of our AWS ruleset
and made plans to extend this comprehensive audit to include both Azure
and GCP cloud platforms as our next priority.

With Okta’s numerous breach reports, we had previously conducted initial
research to develop Dorothy, our threat emulation tool for the platform, and
established a basic ruleset. Our next step was to identify which parts of
the Okta threat landscape were already covered by existing detections and
then pivot to threat research to uncover any gaps for in-the-wild attacks,
such as those from the Scattered Spider threat group known for targeting
Okta users. We replicated these attack scenarios in our lab environment and
addressed the gaps with new or tuned detections.

Collaboration with our integrations and telemetry teams was crucial
to ensure robust global alert telemetry, allowing us to measure the
effectiveness of our rules and make necessary adjustments.

To support advanced detection techniques, we requested enhancements
to the Okta integration for system logs and the Okta Entity Analytics
integrations. The Okta System Log API provides an audit trail of system
events, while the Entity Analytics integration offers contextual user data via
the Okta Users and Devices APIs. Together, these integrations tell us what
happened and give context on who did it. The Entity Analytics integration
initially pulled user data such as group memberships and status from the
Okta Users API. We enriched this data with additional metadata related to

2.1 Integration enrichment

https://attack.mitre.org/matrices/enterprise/cloud/
https://attack.mitre.org/matrices/enterprise/cloud/
https://www.wiz.io/cloud-threat-landscape
https://stratus-red-team.cloud/
https://aws.amazon.com/blogs/security/aws-cirt-announces-the-release-of-five-publicly-available-workshops/
https://aws.amazon.com/blogs/security/aws-cirt-announces-the-release-of-five-publicly-available-workshops/
https://github.com/elastic/dorothy
https://attack.mitre.org/groups/G1015/
https://www.elastic.co/guide/en/integrations/current/okta.html
https://www.elastic.co/guide/en/integrations/current/entityanalytics_okta.html
https://developer.okta.com/docs/api/openapi/okta-management/management/tag/SystemLog/#tag/SystemLog
https://developer.okta.com/docs/api/openapi/okta-management/management/tag/User/
https://developer.okta.com/docs/api/openapi/okta-management/management/tag/Device/#tag/Device

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

14

roles and authentication factors to enhance our querying capabilities,
allowing us to write detections based on both actions and user context.

For example, if a user, “Alice,” is assigned admin rights by “Bob,” we can
use System Logs to view this action and answer questions like “Does
Bob typically assign user roles?” and “Is he authenticated from a typical
location?” We can then use additional context from Entity Analytics to
answer questions like “Does Bob belong to an overly permissive group?” or
“Does he have MFA disabled?” These questions can be used for anomaly-
based detection, threat hunting, and machine learning (ML) to automate
the detection of potential threat activity.

Securing LLM workflows via integrations and
standardized fields
A subset of generative AI (GenAI), large language models (LLMs) introduce
a layer of interpretive reasoning to workflows by analyzing complex
relationships between seemingly disparate data points. As the world was
diving headfirst into GenAI, our team realized the need to embed security
into these LLM workflows. We used Elastic AI Assistant as an example
third-party application — AI Assistant empowers analysts by offering
dynamic threat insights, anomaly detection, and contextual analysis across
vast datasets. Initially, we developed a prototype proxy solution to extract
security-relevant fields from interactions with the AI Assistant.

This approach allowed us to ingest and analyze data from vendor solutions
that lacked built-in security auditing capabilities. Our proof of concept
validated the need for deeper monitoring and highlighted opportunities to
enhance integration processes for broader usability. In collaboration with
our Integrations team, we developed a new integration for AWS Bedrock
model invocation logs, enabling seamless ingestion of LLM-related activity
for threat monitoring. Alongside this, we developed standardized field
mappings for LLM interactions, aligning them with the Elastic Common
Schema (ECS) and OpenTelemetry (OTel) standards. This allows for
consistent data ingestion across various LLM platforms, and makes it
easier to maintain detection rules by minimizing the need for separate rules
for each LLM vendor. As we continue to add and enhance our integrations,
we are strategizing to align other LLM-based integrations to the new
standards we’ve set, paving the way for a unified experience across the
Elastic ecosystem.

2.1 Integration enrichment

https://www.elastic.co/elasticsearch/ai-assistant
https://www.elastic.co/security-labs/elastic-advances-llm-security
https://www.elastic.co/security-labs/elastic-advances-llm-security

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

15

By strategically enhancing cloud and SaaS integrations — and pairing them
with advanced detection methods — we worked to deliver deeper visibility
into the most critical layers of modern IT environments. From strengthening
coverage for cloud platform and identity providers to monitoring LLM-based
applications, our initiatives transformed multiple data sources into coherent,
high-fidelity detections while enabling a more context-aware security
posture for our users.

2.2
Expanding endpoint visibility

Maintaining our endpoint visibility is crucial on multiple fronts: it allows
us to detect threats and anomalies and returns detailed telemetry data
for us to investigate. Enhancing these capabilities benefits our product
and users, but also allows us to respond more thoroughly to evolutions
in the threat landscape.

Evolving Windows in-memory threat detection
In-memory threat detection is a pivotal aspect of endpoint security,
given that many threats now operate entirely in memory for purposes of
Defense Evasion — often by manipulating process memory or indirectly
executing kernel-level syscalls. Over time, our approach to in-memory
detection has evolved considerably through new technologies and
innovative engineering strategies. By collaborating closely with our
endpoint agent development team, we have enriched data sources to
enable more advanced detection techniques.

Early detection methods for in-memory threats often relied on malware
signatures and user-mode hooks — techniques that advanced
attackers learned to circumvent. These approaches offered limited
insight into in-memory activity and over time were insufficient against
sophisticated threats. Preempting these shortcomings, we identified
the need for kernel-level visibility improvements to effectively monitor
memory manipulations. Starting in May 2023, we began adding
significant capabilities to Elastic’s kernel telemetry to capture more
robust data, including:

2.1 Integration enrichment

https://www.elastic.co/blog/detecting-cobalt-strike-with-memory-signatures

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

16

2.2 Expanding endpoint visibility

	� Collecting detailed call stack data directly from the kernel — Elastic 8.8

	� Extending Microsoft’s Event Tracing for Windows (ETW) Microsoft-
Windows-Threat-Intelligence provider for near real-time visibility,
including call stacks, into critical syscalls like VirtualAlloc,
VirtualProtect, and WriteProcessMemory — Elastic 8.11

	� Enhanced Keylogger detection capabilities — Elastic 8.12

	� TCP connect call stacks — Elastic 8.14

	� DeviceIoControl driver events with call stacks — Elastic 8.16

	� Added visibility for Windows Management Instrumentation (WMI), a
commonly abused administration service — Elastic 8.16

	� Added Antimalware Scan Interface (AMSI) events to provide deep
runtime inspection of Microsoft’s native script engines and beyond —
Elastic 8.18

As we continue to develop and refine Elastic Security, we will be delivering
more impactful enhancements to our visibility and detection capabilities:

Token
Impersonation
API events to

detect privilege
escalation

Expanding
OpenProcess API
events to detect
cookie stealer

tradecraft

ResumeThread
API events and
an “early-bird”

behavior heuristic
to detect process

hollowing

ProcessFreeze
API events and an
“active-debugger”
behavior heuristic
to detect abuse

of Windows
Debugging APIs

The release and timing of any features or functionality described
in this post remain at Elastic’s sole discretion. Any features or
functionality not currently available may not be delivered on time
or at all.

https://www.elastic.co/security-labs/upping-the-ante-detecting-in-memory-threats-with-kernel-call-stacks
https://www.elastic.co/security-labs/doubling-down-etw-callstacks
https://www.elastic.co/security-labs/protecting-your-devices-from-information-theft-keylogger-protection
https://www.elastic.co/blog/whats-new-elastic-security-8-14-0
https://www.elastic.co/blog/whats-new-elastic-security-8-16-0
https://attack.mitre.org/techniques/T1047/
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://www.elastic.co/blog/whats-new-elastic-security-9-0-0

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

17

Our continuous enhancements to Kernel ETW telemetry paired with the
incorporation of cutting-edge detection techniques allow us to more
effectively identify and mitigate advanced threats in near-real time. These
advancements are pivotal in safeguarding our users against sophisticated
adversaries and their evolving tactics.

Adding new data sources for macOS
Our team identified a gap in macOS threat coverage because there was
no data source equivalent to the Windows Dynamic Link Library (DLL) load
event that could be used to detect the loading of dynamic libraries (dylibs)
in macOS. After exploring the Apple Endpoint Security API, we discovered
there was no dedicated dylib load event for us to subscribe to. However, we
noticed that mmap events are generated any time a process memory-maps
a binary, dylib, or file. Collaborating closely with our endpoint developers,
we filtered mmap events to capture only dylib loads, enriching the resulting
telemetry with code signature data and dylib hashing to form a dedicated
first-of-its-kind dylib load event for macOS.

New dylib load event enables detection of advanced Evasion on macOS

Once this new event type was created, we built and tested rules around
it. During our research, we examined various Command-and-Control (C2)
frameworks featuring in-memory JavaScript for Automation (JXA) execution
— a technique that loads and executes JXA scripts entirely within process
memory, effectively bypassing many conventional detection mechanisms.
By monitoring the dylib load events for the rapid, consecutive loading of
the JavaScript and StandardAdditions libraries, our team observed a unique
pattern essential for executing JXA scripts in memory.

We developed a sequence rule, In-Memory JXA Execution via
ScriptAdditions, that detects these two dylib loads by the same process in
quick succession. Testing this rule against multiple tool implementations
confirmed its reliability; it generated surprisingly few false positives in our
environment, so we confidently released it to our users. In doing so, we
established a first-of-its-kind detection for in-memory JXA loading and
execution using a novel dylib load event. This development not only expands
our macOS detection capabilities but also demonstrates the value of
engineering custom telemetry to capture advanced threat behaviors.

2.2 Expanding endpoint visibility

https://developer.apple.com/documentation/endpointsecurity/es_events_t/mmap
https://github.com/elastic/protections-artifacts/tree/main/behavior/rules/macos/defense_evasion_in_memory_jxa_execution_via_scriptingadditions.toml
https://github.com/elastic/protections-artifacts/tree/main/behavior/rules/macos/defense_evasion_in_memory_jxa_execution_via_scriptingadditions.toml

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

18

New DNS telemetry uncovers first party intelligence findings on macOS

In addition to dylib load visibility, we recently enriched macOS network
events with domain data and introduced a custom DNS event, another first-
of-its-kind data source for macOS. By capturing DNS requests alongside
other network indicators, we broadened our detection capabilities for
Initial Access and C2 methods. Almost immediately, these enhancements
helped us surface a North Korean (DPRK) campaign targeting developers
via malicious Node Package Manager (NPM) packages – reusable pieces of
code stored in a public registry, which can be easily integrated into Node.
js projects. By correlating DNS event data with package service processes
making suspicious queries, we traced malicious NPM packages to IP lookup
domains used for C2. The DNS telemetry also offers insight into Exfiltration
techniques, as some macOS malware leverages DNS channels to sneak
data out. This new DNS event further underscores how expanding and
enriching endpoint telemetry can yield tangible benefits in uncovering real-
world attacks.

Broadening Linux visibility
Elastic’s expansive ecosystem of integrations significantly amplifies our
detection capabilities for Linux systems by offering in-depth visibility into a
wide array of OS activities. For instance, the System integration facilitates
the collection and analysis of crucial authentication logs and syslog events,
providing insights into user activity and system processes. The Auditd
Manager integration focuses on audit events, enabling the tracking of
changes and potential security violations within the system. Additionally,
the File Integrity Monitoring (FIM) integration plays a key role in maintaining
system integrity by monitoring and alerting on modifications to critical files.

By leveraging these integrations, we broaden our ability to detect and
respond to potential threats within Linux environments. For example,
System may log a suspicious login event, while Auditd Manager captures
an unexpected syscall related to file access, and FIM detects modifications
to a critical system file; all together indicative of an attacker attempting to
modify system files to maintain Persistence, escalate privileges, or cover
their tracks.

2.2 Expanding endpoint visibility

https://docs.npmjs.com/about-npm
https://www.elastic.co/guide/en/integrations/current/system.html
https://www.elastic.co/guide/en/integrations/current/auditd_manager.html
https://www.elastic.co/guide/en/integrations/current/auditd_manager.html
https://www.elastic.co/guide/en/integrations/current/fim.html

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

19

Elastic Defend

Our endpoint detection strategy is tightly coupled with the Elastic Defend
integration, which allows us to monitor host-based event categories like
file, process, network, and many more across Windows, Linux, and macOS
endpoints. A large portion of our detection engineering efforts rely solely
on this integration, as the dataset provides deep-level visibility suitable for
most threat scenarios.

A major enhancement we made (in collaboration with our integrations and
endpoint development teams) was the addition of data fields capturing
effective and permitted capabilities for Linux processes. Capabilities
are a subset of root level privileges that can be individually assigned to
processes in order to limit excessive permissions. We worked together with
our endpoint developers to add the most relevant effective and permitted
capabilities for running processes across all Linux-specific integrations,
including Elastic Defend.

Root level kernel permissions bypass all permission checks, so they
are essential to monitor. These are often assigned to container
processes and can be abused for container breakout techniques.

With this enhanced data, we were able to fill coverage gaps related to Linux
Privilege Escalation techniques. We developed detection rules such as
Privilege Escalation via CAP_SETUID/SETGID Capabilities; which identifies

2.2 Expanding endpoint visibility

https://www.elastic.co/guide/en/integrations/current/endpoint.html
https://www.elastic.co/guide/en/security/current/privilege-escalation-via-cap-setuid-setgid-capabilities.html

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

20

sequences where a process with CAP_SETUID or CAP_SETGID capabilities
executes and subsequently elevates its access to root (UID/GID 0). These
capabilities enable processes to manipulate user and group identity,
potentially allowing attackers to exploit misconfigurations and escalate their
privileges to root.

Auditd Manager

Auditd is a user-space component of the Linux Auditing System that hooks
into the Linux kernel space and captures detailed information about syscalls
and other security-related events. With our Auditd Manager integration, we
can establish a subscription to the kernel to receive these events as they
occur. Multiple messages sent for a single auditable action are consolidated
into one easily digestible event that includes the different aspects of the
activity (the syscall itself, file paths, current working directory, process
title, and more). As we’ve explored, Auditd is a powerful tool for detection
engineering and we use this integration to expand visibility in some areas
where Elastic Defend is limited.

One of our most effective Auditd rules, Kernel Driver Load, detects when
a Linux loadable kernel module (LKM) is loaded through system calls.
An LKM is a piece of code that can be dynamically loaded into the Linux
kernel to extend its functionality without the need to reboot the system.
Threat actors can load a rootkit using LKMs, giving them total control of
the system and the ability to hide from security products. As other rules
monitor for the addition of LKMs through system utilities or .ko files, this
rule is designed to catch attempts by rootkits to evade those detections
by monitoring for kernel module additions at the system call level. Using
Auditd Manager, this rule monitors the init_module() and finit_module()
syscalls, capturing all LKM loads and making bypass attempts by threat
actors very hard, if not impossible.

File Integrity Monitoring (FIM) integration
Detecting built-in shell functionality such as echo and pipes/redirects
presents unique challenges, as these operate within the shell process
itself rather than invoking distinct executables. As a result, traditional
process-based detection methods may not capture file modifications made
through these utilities. To ensure comprehensive visibility at the endpoint
level, we leverage the FIM integration. FIM monitors files in real time via a

2.2 Expanding endpoint visibility

https://www.elastic.co/security-labs/linux-detection-engineering-with-auditd
https://www.elastic.co/guide/en/security/current/kernel-driver-load.html

En
ha

nc
in

g
El

as
tic

 S
ec

ur
ity

21

subscription with the OS and sends events when a change (create, update,
delete) to those files occurs. This was a vital part of our detection strategy
for Linux Persistence mechanisms. The rule Potential Persistence via File
Modification uses FIM to detect modifications to a select group of files that
are commonly abused for Persistence, like cron jobs, systemd services,
message-of-the-day (MOTD), and SSH configurations. While Auditd can
technically monitor files for changes as well, FIM is more optimized for this
and is often the better choice for file monitoring.

These examples represent just a few of the many unique ways we leverage
our broad selection of data sources to expand visibility and ultimately
improve our endpoint detection capabilities. While we can use these
integrations in isolation, they complement one another well in unique
detection use-cases. For example, Elastic Defend might detect a process
gaining specific capabilities, while Auditd Manager would then monitor
for any unauthorized file access attempts using those capabilities. By
combining these data sources, we can broaden our visibility and identify
high-risk sequences of events indicative of malicious behavior.

By engineering deeper kernel-level visibility on Windows, pioneering
novel dylib load and DNS telemetry on macOS, and using various Linux
integrations creatively, our endpoint detection efforts have significantly
expanded the scope of advanced threat coverage and early threat
detection. These enhancements illustrate how strategic collaboration with
endpoint developers and creative rule design can illuminate even the most
elusive attacker behaviors.

2.2 Expanding endpoint visibility

https://www.elastic.co/guide/en/security/current/potential-persistence-via-file-modification.html
https://www.elastic.co/guide/en/security/current/potential-persistence-via-file-modification.html

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

22

Part 3

Internal metrics and evaluation

Detection engineering success at Elastic is measured at two distinct levels:
immediate operational performance and long-term strategic impact. Some
metrics are tactical, focusing on day-to-day rule performance such as
detection efficiency, false positive rates, and query execution speed. Others
are strategic, evaluating our contribution to broader goals like organizational
objectives and key results (OKRs).

3.1
Operational performance analysis

Our Endpoint Behavior rules are high-confidence and prevention-focused,
designed to require minimal tuning and limited false positives. In contrast,
our SIEM Detection rules provide broader threat coverage by leveraging all
available data sources, tuning is expected as many of our low severity rules
are meant to be used as signals and noisy by design — allowing for greater
compatibility and control by users to fit to their environments.

We continuously refine these rules to adapt to the unique environments
of our users. This ongoing effort does not imply that our rules are flawed
from the start; rather, it demonstrates our commitment to ensuring broad
applicability and effectiveness across diverse environments. By avoiding
overfitting our rules to any single organization, we maintain their relevance
and reliability for all our users.

Performance metrics measure day-to-day rule efficacy and noise
levels by validating rule logic and guiding our tuning efforts,
especially for our Endpoint Protections. By minimizing unintended
noise and keeping our rules relevant as new threats emerge,
we ensure our users can trust the alerts, respond swiftly to real
incidents, and ultimately maintain a stronger security posture.

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

23

3.1 Operational performance analysis

Protections malware feed efficacy
The protections malware feed efficacy score is a key metric used to validate
the effectiveness of our Endpoint Protections against real-world threat
behavior.

To calculate this score, we ingest malware samples using our internal
sandbox tool, Detonate. We process more than 500 per day, filtering out
benign samples, and then for each malicious sample we analyze whether
any Protection rules trigger. Any undetected malware is immediately triaged
for coverage gaps, ensuring that new or evolving threats are accounted for.
Our goal is to maintain a detection rate at or above 99%, and when coverage
falls below this threshold, we investigate, improve detection mechanisms,
and reassess protections. This metric validates the daily work of our
detection engineers by ensuring broad malware coverage and identifying
areas requiring improvement.

This score assesses our ability to detect and block 99% of malware
samples using our multilayered detection features:

	� Behavioral protection rules
	� Malware detection
	� Ransomware prevention

	� Memory threat detection
	� Malicious behavior monitoring
	� YARA signatures

Figure 5: Coverage rate for Windows malware by file type from Oct 2023 - Oct 2024

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

24

Readers can view how we fared in the AV-Comparatives Malware Protection
Test — an independent evaluation designed to simulate real-world attack
scenarios against antivirus and endpoint security solutions.

Addressing false negatives and rule tuning
In addition to tracking malware coverage, we monitor telemetry for false
negatives. If a rule is found to be underperforming, we collect additional
telemetry and refine our detections. Fine-tuning rules is a crucial but
selective process due to the scale of our coverage — spanning over 1,000
Endpoint Protection rules, each tailored to different attack techniques (file,
process, API-based detections, etc.). Tuning decisions requires understanding
the rule logic, determining whether to exclude specific conditions (e.g., file.
path, command.line), and analyzing agent coverage trends.

One key threshold we monitor is sudden increases in alerting across agent
environments. If a rule queries across 10,000 agents, and suddenly 1,000
agents begin generating alerts for it, it’s likely false positives. The acceptable
tuning threshold varies by environment size; for example, in a 1,000-agent
deployment, a smaller alert spike may warrant tuning, whereas in a large-
scale deployment, stricter thresholds are applied before changes are made.

We also assess whether or not there is room for additional protection types
when an alert is triggered. For example, if a sample triggers a protection rule
in behavior mode only but lacks corresponding memory or signature-based
alerts, we look for ways we can further reinforce our detection of this sample
using memory or signature-based rules.

Automated threshold-based prioritization for rule tuning

To systematically flag rules for review, we apply automated alert thresholds
based on a 12-hour monitoring window. A rule is flagged for tuning based on
the number of:

	� Total detections
	� Unique process names triggering the rule
	� Unique agents from a single cluster triggering the rule
	� Unique clusters affected, exceeding a total number of detections
	� Unique agents triggering the rule in 24 hours

3.1 Operational performance analysis

https://www.elastic.co/blog/elastic-security-malware-protection-test-av-comparatives
https://www.elastic.co/blog/elastic-security-malware-protection-test-av-comparatives

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

25

When a rule exceeds these thresholds, automated alerts are sent to our
dedicated Slack channel and distributed via email, prompting investigation.
Additionally, a separate alert prioritizes “Top Clusters,” ensuring that the
most widespread detection issues receive immediate attention. Since some
endpoints run older detection artifacts, we also account for delayed rule
rollouts. The process is fully automated until investigation begins, at which
point we determine whether to refine or exclude specific rule conditions
based on false positive analysis.

Rule variability with relative alert magnitude
Relative alert magnitude acts as another false positive indicator based on
alert distribution, serving as a standardized measurement of randomness
for alerts. Using our alert telemetry data, we take the volume of alerts
generated across all hosts per month to find the mean for each rule. We
then take the standard deviation (std) for each rule and come up with a
std-to-mean ratio for each rule. This value represents how consistently a
rule is triggering alerts.

High variability means a rule is triggering more sporadically across
clusters. This is more indicative of true positive alerts because threat
behavior often impacts our users in a random way. Low variability means
a rule is triggering more consistently across clusters, which is more
indicative of false positive alerts because threat behavior very rarely
impacts our users in a consistent way. Instead, this may be a poorly tuned
rule generating noise across clusters.

We use this variability score to help us determine where to prioritize our
detection engineering efforts. The goal is to maintain effective coverage
while minimizing false positives, ensuring that variability reflects well-tuned
rules aligned with detection engineering objectives. On a range of 0–n
where 0 = truly consistent and n = variability, we determined a threshold
value of .2 as a good indicator of a rule triggering too consistently and in
need of potential tuning.

3.1 Operational performance analysis

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

26

This threshold was based on our own independent knowledge of
false positive alert data — we wanted to make sure the threshold
we chose captured known noisy rules, while leaving room to include
those we may not notice. Additionally, since this is only one of the
metrics we use to determine rule efficacy, we felt comfortable
keeping the scope a bit broad as we can use other indicators for
further filtering.

Why mean alone is insufficient

While mean alert volume is a useful indicator of noise levels, it is not always
the best measure of rule efficacy. A high mean could suggest an excess
of false positives, but it could also reflect frequent legitimate alerting
behavior or be skewed by older rule versions still in use. For example, the
rule Suspicious Network Activity to the Internet by Previously Unknown
Executable showed its highest alert volumes between October 2023 and
February 2024, with mean values ranging from 969 to 4,660 alerts per
month. At first glance, this spike might indicate excessive false positives;
however, examining other variables paints a different picture.

Figure 6: Mean rule alert volume timeline for Suspicious Network Activity to the Internet by Previously
Unknown Executable, differentiated by rule version

5000

1000

969

113

2574

91

17
24

298

4660 4226
3318

37

32

99

40

500

100

50

10

Oct 2023 Nov 2023 Dec 2023

Date

Version 1 Version 3 Version 5

Jan 2024 Feb 2024

3.1 Operational performance analysis

https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html
https://www.elastic.co/guide/en/security/current/suspicious-network-activity-to-the-internet-by-previously-unknown-executable.html

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

27

For context, this is a New Terms rule, meaning it only alerts on previously
unseen values of a specific field within each environment — in this case,
process.executable. This design inherently limits false positives, suggesting
that the high alert volume may be expected given its broad detection logic.
To validate this further, we examined rule versions. By February 2024,
seven different rule versions were in production, and the highest mean
values were all associated with version 1, meaning users running older rule
packages were driving the alert volume.

A major rule tuning update was released with version 5 in November
2023. By December 2023, after allowing time for users to adopt the
update, the alert volume dropped significantly, with a mean value of 298
compared to 4,660 from version 1. Some might still consider 298 too high,
prompting further tuning consideration; however, instead of relying solely
on mean values, we can assess the rule’s variability score to gain a more
comprehensive view. The December 2023 version 5 std-to-mean ratio was
5.62, well above our .2 threshold, indicating high variability — which strongly
correlates with true positive detections rather than persistent false positives.

Given these insights, we determine that this rule was performing as
intended, and our detection engineering efforts would be better spent
elsewhere. This example highlights why mean alert volume alone is
insufficient — without additional context like variability scoring and rule
version analysis, tuning efforts may be misguided, leading to unnecessary
changes that could weaken detection efficacy.

Operational performance metrics drive continuous refinement of detection
coverage, ensuring our detection engineering efforts remain data-driven
and adaptive. By automating rule tuning thresholds and analyzing false
negatives, we proactively close detection gaps and optimize rule fidelity.
While we highlighted key examples — such as rule variability, malware
efficacy, and alert distribution trends — these represent just a subset of the
broader set of metrics we use to assess and refine detection performance.
The success described in these metrics is a direct result of our detection
engineering processes, including how we address false positives and our
methods of prioritization for rule tuning. These measurements collectively
provide a structured approach to improving detection accuracy and our
users’ experience by reducing unnecessary alert volume.

3.1 Operational performance analysis

https://www.elastic.co/guide/en/security/current/rules-ui-create.html#create-new-terms-rule

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

28

3.2 Strategic business objectives and results

3.2
Strategic business objectives and results

We track strategic objectives to ensure our work not only improves day-to-
day detection performance but also aligns with broader business goals. By
measuring OKRs, we assess the user impact, operational efficiency, and
efficacy of our detection engineering efforts. There is overlap between
what our day-to-day performance metrics and OKRs measure. However,
our OKRs are measured alongside the work of other teams as an indicator
of our collective progress toward company-wide strategies; the primary
strategy being to build a security product that improves the day-to-day
value for our users.

Keeping endpoint alert volume below 1%
One of the main pain points that security teams tackle with prebuilt
security content is that broad detection logic can become too noisy in
certain environments, leading to alert fatigue. More importantly, Endpoint
Protection alerts can cause direct disruptions by terminating processes,
quarantining files, etc. With this in mind, one of our core objectives is
ensuring that fewer than 1% of hosts generate Endpoint alerts. This serves
as a key false-positive indicator and measures impact on our users’ day-to-
day experience with alert volume.

To ensure accuracy, we calculate this daily and average it monthly, reducing
data skew from short-lived hosts. Breaking it down by protection type
(malware, memory, behavior, ransomware) and operating system allows us
to pinpoint areas needing improvement.

A high percentage of affected hosts may signal overly broad detection
logic, excessive noise, or misconfigurations. Keeping this number below
1% ensures high-fidelity detections. This threshold was decided by our
subject matter experts as a realistic expectation for the number of true
positive alert instances at any given time. Over the last year, we’ve stayed
well below this threshold each month across each OS. Our day-to-day
processes discussed in section 3.1 allow us to maintain these results and
ultimately support our users’ experience by reducing unnecessary alerts.

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

29

Figure 7: Monthly percentage of hosts with Endpoint Behavior alerts, Oct 2023 - Oct 2024

Percentage of Hosts with Endpoint Alerts

Maintaining a 14-day rule release cadence
Releasing both SIEM Detection and Endpoint Protection rules within a 14-
day cycle is crucial for delivering timely and relevant protections against
evolving threats we tackle day-to-day. This goal is important to us because
it ensures our customers can quickly adopt new rules to safeguard their
systems. To achieve and sustain this cadence, we focus on:

Efficient threat
intelligence integration
to shorten research-to-

detection timelines

Streamlined CI pipelines
to automate testing and

deployment

Scalable rule validation
to maintain detection
quality and minimize

false positives

Maintaining this cadence is challenging, but it is essential for keeping our
users protected and we’re delighted to consistently share our rules with

0.09Oct
2023

Nov
2023

Dec
2023

Jan
2024

Feb
2024

Mar
2024

Apr
2024

May
2024

Jun
2024

Jul
2024

Aug
2024

Sep
2024

Oct
2024

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.17
1.02

0.71
1.33

0.14

0.1
1.04

0.73
0.1

0.95
0.76

0.04
1.42

1.75
0.04

1.42
1.75

0.03
1.93

1.21
0.53

0.87
1.43

0.58
1.02

1.48

1.5
0.99

0.45

0.19
0.71

1.32

1.12

0.19
0.79

0.27
0.52

1.07

Linux macOS Windows

3.2 Strategic business objectives and results

In
te

rn
al

 M
et

ric
s

an
d

Ev
al

ua
tio

n

30

In addition to providing these tests for internal use, we have
migrated all our RTAs to Cortado (Consolidated RTAs), a public repo
we share with the community as an easy way to test our ruleset!

the community at large through our Detection Rules and Protections
Artifacts repositories.

Maintaining 100% RTA coverage of endpoint
behavior rules
One of the ways we automate testing our ruleset is through Red Team
Automations (RTAs). RTAs are Python scripts that either reference a
malware sample hash that exhibits threat behavior we aim to detect or it
emulates the attacker behavior through code. RTAs provide a simple way
to verify that detection rules are generating the expected alerts for our
SIEM and Endpoint Protection rules.

Due to the difference in design, we hold a different standard for testing
each ruleset. For Endpoint Protection rules, our goal is to have 100% RTA
coverage. Meaning when a new rule is created, it is created alongside
an RTA that provides test data to verify the rule triggers on expected
behavior. This additional testing ensures protection rules are valid and
remain high fidelity across multiple user environments.

RTAs serve a larger purpose beyond new rule development. We use them
to regression test rules to validate new features added to the SIEM or
endpoint agent and any modifications based on rule tuning, as well as for
maintenance. This process can become time-consuming with hundreds
of rules to test across multiple Stack versions, but RTAs help to automate
the process. Additionally, sometimes we get requests for sample data,
or methods to generate suspicious events to baseline configurations.
RTAs are a quick and easy way to provide this data in support of other
initiatives at Elastic.

While we highlighted key examples, these represent just a subset of
the OKRs we monitor. Together with our operational metrics, these
OKRs provide a comprehensive framework for evaluating our detection
engineering efforts and measure how effectively we provide value to
our customers.

3.2 Strategic business objectives and results

https://github.com/elastic/cortado
https://github.com/elastic/detection-rules
https://github.com/elastic/protections-artifacts
https://github.com/elastic/protections-artifacts

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

31

Part 4

Considering threat reports and
looking ahead

Creating an efficient product requires strategic planning, so we spend
a lot of time discussing our detection engineering plans. There are two
key spaces that affect these discussions: the past and the future. Threat
reports like Elastic’s annual Global Threat Report are crucial for us as a
strategic validation tool, highlighting which threats are most prevalent
across Elastic Security’s global telemetry.

4.1
Partnering with the Elastic Global
Threat Report

The Elastic Global Threat Report (GTR) and our detection engineering
efforts are deeply interconnected, each reinforcing the other. The alert
telemetry that powers the GTR is influenced by the detection and protection
rules we create, capturing real-world adversary behaviors across cloud,
endpoint, and network environments. In turn, the threat trends surfaced in
the GTR provide us with a broad, data-driven perspective, validating existing
detection coverage and helping to direct our efforts.

One of our core responsibilities as detection engineers is to respond rapidly
to in-the-wild threats. We continuously track emerging attack techniques,
and much of our work involves adapting to real-world adversary behaviors
as they happen. The data from the GTR helps us identify gaps, fine-tune
detections, and prioritize research areas that will have the greatest impact
on our customers.

The 2023 Elastic Global Threat Report
While not exhaustive, this section provides a retrospective on our responses
to several of the key threat trends identified in the 2023 GTR.

https://www.elastic.co/resources/security/report/global-threat-report

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

32

4.1 Partnering with the Elastic Global Threat Report

Forecast: “Defense Evasion is going to remain the top investment, and tam-
pering will supersede masquerading”

Adversaries continue to prioritize Defense Evasion, employing methods such
as System Binary Proxy Execution and Masquerading techniques. In response,
we have significantly enhanced detections across all operating systems. Out
of 336 new EDR rules, 152 were focused on Defense Evasion, accounting for
approximately 45% of detection efforts related to Endpoint Protection Rules.
Out of 256 new SIEM rules, 67 were focused on Defense Evasion, representing
around 26% of detection engineering efforts for SIEM Detection Rules.

These rules covered a broad range of evasion techniques beyond
Masquerading, with the top being:

	� Process Injection
	� System Binary Proxy Execution

	� Highjack Execution Flow
	� Impair Defenses

The importance of Defense Evasion

As detailed in Unveiling Malware Behavior Trends, our large-scale analysis
of behavior trends from over 100,000 Windows malware samples identified
Defense Evasion as the most frequently observed adversary tactic. This
tactic triggered 189 distinct detection rules, accounting for nearly 40% of all
Windows rules in our library. The high use of Defense Evasion techniques in
real-world attack patterns across various malware makes it a top priority in
our detection engineering efforts for Windows.

The primary techniques observed in this breakdown included Code
Injection, Defense Tampering, Masquerading, and System Binary
Proxy Execution.

Specific coverage efforts: Linux Defense Evasion research and
rule development

We analyzed numerous techniques for evasion on Linux such as process/pid
hiding, encoding and decoding payloads, and the use of GTFOBins.

The outcome of this research included increased detection coverage for
techniques within the following categories:

https://www.elastic.co/security-labs/unveiling-malware-behavior-trends
https://gtfobins.github.io/

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

33

	� GTFOBin SO loading

	� GTFOBin reverse & bind shells

	� GTFOBin proxy execution

	� Busybox evasion techniques

	� Dynamic Linker modifications

	� Curl/Wget downloads

	� SSL & CA certificates

	� Disabling/removing protections
(e.g., firewalls, AppArmor, Auditd,
SELinux) and more.

This was a broadly scoped effort but is still not exhaustive. It helped us to
identify gaps that will need to be addressed in the near future like rootkits,
Process Injection techniques, and web shell usage.

Forecast: “The malware-as-a-service (MaaS) model will become
more popular”

The increasing popularity of the Malware-as-a-Service (MaaS) model has
abstracted the complexities of cyber intrusions, enabling less experienced
threat actors to launch more sophisticated attacks. As mentioned in
previous sections, malware analysis and malware feed detection efficacy is
baked into our day-to-day detection engineering efforts, making this a focus
area across all endpoint platforms. Additionally, we’ve devoted significant
effort toward detecting commonly used scripts, tools, and malware
behaviors in support of our broader effort to tackle less experienced actors
using MaaS platforms.

Specific coverage efforts: macOS infostealer YARA research and
rule development

We conducted an in-depth analysis of macOS malware samples collected
from the macOS Malware Collection by Objective-See and various stealer

4.1 Partnering with the Elastic Global Threat Report

https://github.com/objective-see/Malware

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

34

variants (e.g., MacStealer, MetaStealer, RealstStealer) discussed in blogs
from SentinelOne and Kandji. Our analysis focused on identifying unique
characteristics and hardcoded behaviors of each sample, which could be
used to create YARA rules for future detection.

Key findings and actions included:

	� Commonality detection: We identified that many stealer samples
encoded AppleScript in various ways (Hex, XOR, Base32, etc.). We
developed a YARA rule to detect these encoding methods, achieving a
100% detection rate on the stealer samples with zero false positives. This
rule was run as a live hunt for over a week, yielding only true positive
detections and uncovering previously undetected stealer samples.

	� Specific rules for variants: For MetaStealer and RealstStealer, we
created specific YARA rules.

	� General rule for other samples: For samples that did not encode
AppleScript or were not Rust or Go-based, we created a rule to detect
the presence of six or more crypto wallet extension IDs. This rule also
ran as a live hunt for several weeks, resulting in zero false positives
and numerous true positives, including the detection of previously
undetected samples reported on social media.

These rules have provided a robust foundation for detecting the majority
of macOS stealers and will be continuously updated to account for new
variations or samples.

Forecast: “Cloud credential exposure will be a primary source of data ex-
posure incidents”

As highlighted in section 2.1, we have significantly increased our detection
engineering efforts for Cloud and SaaS platforms over the past year. Given
the increasing reliance on these platforms and the prevalence of credential
abuse, this area has become a critical focus for us. We developed 23
new SIEM rules related to Cloud Credential Access techniques, spanning
platforms like AWS, Okta, Microsoft 365, and endpoint environments to
account for cross-platform threat behavior.

Specific coverage efforts: Microsoft 365

Our efforts related to Microsoft 365 Credential Access threats focus on
several key areas to identify and mitigate potential attack vectors.

4.1 Partnering with the Elastic Global Threat Report

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

35

By focusing on these areas, we ensure a comprehensive approach to detecting
and mitigating credential access threats within Microsoft 365 environments.

The 2024 Elastic Global Threat Report
While the data sourced for this SDEE is only reflective of our response to the
2023 GTR, there are some interesting trends in our most recent Global Threat
Report that we’ve started to address and will continue to focus on in the
coming year.

For example, the 2024 Global Threat Report reported the following:

	� Credential dumping and abuse: We implement rules to detect attempts
to access and dump credentials from sensitive processes and files,
such as monitoring for the creation of Kerberos ticket dump files and
unauthorized access to the LSASS process.

	� Unauthorized access and privilege escalation: Our monitoring includes
identifying activities that suggest attempts to gain unauthorized access
or escalate privileges, which can lead to credential theft. This involves
detecting suspicious processes and bypass attempts of security controls
like User Account Control (UAC).

	� Persistence mechanisms: We track various Persistence mechanisms
that attackers might use to maintain access to compromised systems,
which can facilitate ongoing credential access. This includes monitoring
for registry modifications and the creation of malicious Persistence files.

	� Exploitation of legitimate tools: We keep an eye on the misuse of
legitimate tools and applications that can be leveraged to access
credentials. This involves detecting unusual or suspicious usage patterns
of tools like PowerShell and HTML applications.

	� Windows #1 tactic → Defense Evasion
	� Linux #1 tactic → Persistence
	� macOS #1 tactic → Execution
	� Cloud #1 tactic → Credential Access

This distribution reinforces the need to differentiate our focus areas
across platforms in order to address their unique threat landscapes.

4.1 Partnering with the Elastic Global Threat Report

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

36

Figure 8: Distribution of new rules by tactic from October 2024 to March 2025

New SIEM and EDR Rules

While our approach to SIEM rules allows for broader tactic scope, our EDR
rules have heavily focused on high-confidence tactics that are strong
indicators of an active threat. Primarily Execution, Defense Evasion, C2,
and Persistence.

Additionally, the team is focused on the evolution of the generative AI
landscape. Attackers are utilizing this technology in various ways and our
team will continue to monitor these emerging techniques — especially
sophisticated phishing campaigns. However, we also intend to watch how
generative AI is benefiting defenders.

These benefits have been seen internally, with both Elastic’s foundation
in Search AI as well as our use of generative AI to produce investigation
guides for our SIEM rules — an important yet time-consuming task. By using
generative AI to analyze individual rule contexts alongside standardized
guidance, we can create investigation guides more quickly. This enhances our
ability to provide user value while freeing us to conduct more threat research.

Initial Access

Execution

Persistence

Privilege Escalation

Defense Evasion

Credential Access

Discovery

Lateral Movement

Collection

Command and Control

Exfiltration

Impact

0

Detection
Rules

Endpoint
Rules

20 40 60 80 100

2

34

8

7

10

6

1

3

6

6

27

4

16

8

6

3

5

2

5

5

40

73

21
89

4.1 Partnering with the Elastic Global Threat Report

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

37

4.2 Looking forward

4.2
Looking forward

As the cybersecurity threat landscape continues to grow in complexity,
our detection engineering team has undertaken a comprehensive review
to outline our goals for the upcoming year. We consolidated insights from
team discussions, focusing on priority threats, detection gaps, process
improvements, and the incorporation of AI.

Priority threats and adversary behaviors
With regard to our detection engineering efforts, there are several areas
that we are keeping a close eye on as the year unfolds. Our intention with
this section is to show you how we plan to adapt to recent threat trends.
Maybe you can beat us to it?

Artificial intelligence (AI)

The rapid advancement and adoption of AI technologies have introduced
new vectors for adversarial attacks, making it a significant area of concern.
Over the next year we will enhance our AI threat detection coverage by
focusing on the following:

	� Mapping AI threats using frameworks such as MITRE ATLAS: Helps us
understand the TTPs used by adversaries.

	� Developing robust detections for adversary use of AI: Identifying
and mitigating AI-enabled attacks (e.g., the use of GenAI to create
sophisticated phishing emails, prompt-based injections, and jailbreaking).

	� Monitoring identity access to LLM APIs and analyzing LLM responses:
Monitoring cloud-based LLM model API calls for suspicious access
attempts and malicious outputs.

Both attackers and defenders are continuously pushing the limits of what is
achievable, and it is our mission at Elastic to comprehend these ever-shifting
dynamics. We recognize that the threat landscape is not static; it is a fluid
and adaptive environment where new threats and vulnerabilities can appear
at any time. Therefore, we remain agile and responsive to emerging trends,
constantly refining our detection capabilities to ensure that our users are
well-protected against the full spectrum of threats, both present and future.

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

38

	� Developing heuristics for identifying suspicious prompt structures:
Analyzing AI-generated content for signs of manipulation.

	� Capturing endpoint activity related to LLM interactions: Monitoring
local hosts for unusual activities related to LLMs.

To address these growing concerns, we will build upon existing Prompt
Injection detections and enhance the logging of AI model activity across
cloud platforms.

Endpoint security

Endpoint security will remain a priority for our team over the next year. While
some focus areas will overlap across operating systems, we will differentiate
our efforts to address the unique threat landscape of each OS and the
differing maturity levels of each ruleset.

	� Windows: Adversaries often exploit the openness of our detection logic
to evade us. For example, we observed some C2 frameworks attempting
to bypass our existing detections by mimicking false positive exclusions
for our rules. Some have also been observed using advanced TTPs (e.g.,
memory guard protection) to prevent memory scanning. We’ll attempt to
counter this by:

	‒ Duplicating crucial Endpoint Protection rules as SIEM Detections
with broader conditions: With fewer exclusions, this will help catch
more sophisticated evasion techniques.

	‒ Make existing detections more aggressive or resilient:
Ensure that existing detections are robust enough to identify
and mitigate advanced attempts to bypass defenses. Key
areas of focus include Process Injection, Credential Access,
and Initial Access.

	� Linux: Continue to address Persistence mechanisms, prioritize Evasion
techniques, enhance YARA signature development, and improve
detections for common attack vectors. More specifically:

	‒ Address evasion via exposed rule exclusions: Similar to Windows,
many Linux EDR rules rely on excessive exception lists, which
attackers can exploit to evade detection. We will leverage SIEM
Detection rules to create similar rules with fewer exceptions to
combat this.

4.2 Looking forward

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

39

	‒ Enhance malware signature detection via YARA signatures: While
behavior-based detection methods can account for a broad range
of malware behaviors, there is still an important place for signature
based detections that provide another layer of defense against known
malware. We will develop new YARA signatures specifically for Linux
malware and adversary tooling.

	‒ Improve detections for brute-force attacks and public-facing
service exploitation: These remain common attack vectors
for botnets, leading to deployments of crypto miners, use of
compromised systems for pivoting, and other threats. DNS and
reputation-based lookup services will be leveraged to help close
this gap.

	� macOS: For macOS we will shift focus to enhancing our SIEM ruleset,
as most of our efforts thus far have been for Endpoint Protection rules.
However, there are some considerations in doing this that we want
to explore.

	‒ Supplement threat research with more telemetry: A large
segment of the community utilizes our SIEM rules without installing
our Endpoint Protection rules. By converting some of our macOS
protections to SIEM, we will enable a larger community of researchers
and funnel back more telemetry for our own continued research. This
comes with an increased need to balance alerts across SIEM and
Endpoint, and our team is committed to minimizing duplicate alerts.

By addressing these areas, combined with our ongoing advocacy for
enhanced Elastic capabilities, we will significantly bolster the maturity and
effectiveness of our endpoint rulesets.

Cloud and SaaS security

Adversaries are increasingly targeting cloud environments and, as
mentioned in part 2, we increased our focus on cloud and SaaS over the last
year with a particular focus on AWS and Okta. Moving forward, we plan to
expand to other cloud and SaaS platforms and continue to concentrate our
efforts on key areas within these core attack surfaces:

	� Securing compute and containerized workloads: Tracking access
to compute and containerized workloads, identifying vulnerabilities

4.2 Looking forward

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

40

and misconfigurations, and detecting container breakouts and
cryptominer distribution by monitoring logs from both local and cloud-
managed instances.

	� Securing APIs and data workflows: Monitoring API and network flow
logs for anomalies, and improving detections for unauthorized data
storage access by identifying anomalous CRUD (Create, Read, Update,
and Delete) operations and potential exfiltration.

	� Detecting identity and access management (IAM) and credential
abuse: Monitoring for suspicious IAM activities and use of compromised
credentials by incorporating entity analytics and contextual awareness
into our detection methods. Identifying anomalies in authentication and
authorization workflows (e.g., OAuth, SAML, OIDC).

	� Building context-aware detections: Enhancing detection accuracy
by correlating cloud-based threats with endpoint footprints and using
context-aware capabilities (e.g., CSPM, CNVM, asset inventory, and risk
scores) to fine-tune detection logic.

	� Researching cloud-focused threat actors: Tracking and researching
adversarial behaviors and footprints from groups targeting cloud and
SaaS environments.

In order to achieve these goals, we must improve containerization auditing,
enhance our emulation and threat modeling processes, and fine-tune
existing detections for core API services and data workflows.

Innovations in rule development enablement
We are constantly searching for ways to optimize our rule development
lifecycle. In this section, we want to share some of the key areas of
innovation we plan to address as the year unfolds.

Process improvements

There are many ways we can improve our rule development process to the
benefit of both our detection engineers and our users, including:

	� Automating RTA coverage using known/recent hashes: Right now
the RTA development process is completely manual. By using known
malware hashes to trigger certain rules, we will greatly reduce rule

4.2 Looking forward

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

41

developer burden while maintaining our testing standards.
	� Adjusting detection rule severity scores to make alerts more

meaningful: We will explore the use of factors like asset criticality, user
behavior history, and AI-driven risk analysis to determine rule severity
scores either globally or per-environment.

	� Tracking tuning efforts over an individual rule’s lifetime: This will help
us determine the value of extensive rule tuning efforts when compared
to a rule’s ability to capture real-world threats like VirusTotal malware
samples and ensure our efforts are placed on the most impactful rules
for users.

Contextual data and entity analytics

Similar to our goals in cloud, integrating Entity Analytics for targeted data
collection will enable context-aware detections across endpoint platforms.
These represent ideas for capabilities that we will advocate for and hope to
explore over the next year, like:

	� Collecting data on installed patches, user attributes, and hardening
status: This will help us utilize the security posture of an environment as
part of detection criteria.

	� Specifying detection conditions based on user-specific technologies
and attributes: This will improve the relevance and accuracy of our
detections, making them more context-aware.

AI and machine learning assistance
Our team found the discussion around the potential for AI and ML to
enhance our rule development process particularly engaging. While specific
implementations are still exploratory and do not reflect Elastic’s official
product roadmap, we are eager to investigate the possibilities of AI and
ML-driven advancements in areas such as dynamic threshold adjustment,
false positive reduction, and rule tuning over the coming year and beyond,
including:

	� Using AI to dynamically adjust detection thresholds and suggest
exceptions: Reducing false positives and improving the accuracy of our
detections.

4.2 Looking forward

C
on

si
de

rin
g

Th
re

at
 R

ep
or

ts
 a

nd
 L

oo
ki

ng
 A

he
ad

42

	� Generating False Positive (FP) reports: Quickly identifying and
addressing issues with our detection logic, and potentially providing us
with recommended rule ideas.

	� Leveraging Elastic AI Assistant for Security: Applying rule tunings to
filter out user-suggested false positives, checking against telemetry and
malware hashes, and creating drafts for rule changes.

	� AI for malware analysis: Utilizing AI for static binary analysis and
potentially dynamic malware analysis through a cloud sandbox running
extensive ML models on binaries that seem to be suspicious.

	� Rescanning suspicious malware samples: Using AI models to rescan
suspicious low true positive malware samples in VirusTotal and other
malware databases to find novel malware.

	� GenAI for telemetry analysis: Implementing workflows for saving
interesting alert telemetry, parsing it daily with an LLM, and sending
Slack messages for notable events.

	� Automated alert grouping and summarization: Utilizing GenAI to
automatically group and summarize similar alerts within the UI, provide
explanations for noisy patterns, and suggest tuning options.

We’re incredibly enthusiastic about the strategic direction we’ve outlined
for our detection engineering efforts in the coming year. Our roadmap
prioritizes proactively addressing emerging threats, bridging detection gaps,
and harnessing the transformative potential of AI and automation to optimize
our rule development. We’re also particularly excited to champion innovative
ideas for Elastic capabilities and push the boundaries of what’s possible.

4.2 Looking forward

43

C
on

cl
us

io
n

Conclusion

The challenges of today’s threat landscape are immense — far too big for
any one company to solve. Elastic approaches these problems by fostering
community, whether it’s encouraging discussion or running our detection
bug bounty program. These efforts create positive changes to the threat
landscape; but even more importantly, they continue the conversation.

In order to demystify the threat landscape, it must be discussed
thoroughly. How we approach it, break it down, create protections for it.
Yes, this is exploring threats and actor behavior, but it is also exploring
our own efforts and calling the community to hold us accountable. We’re
continuing the conversation on Elastic Security Labs, and we’ll keep
making Elastic Security the best it can be.

Some companies create products to make revenue, we’re tuning a security
tool to make it the most effective version possible. To give our users one
less thing they have to put resources into.

There’s no secret to delivering robust and reliable security capabilities that
meet our user’s needs, it’s just a lot of hard work and planning. Seeing
what the threat landscape throws at us and adapting. Those adaptations
create improvements, and those benefit everyone.

So whether you’re a veteran detection engineer, a security tool creator,
or you downloaded this report to take a break, we’re glad that you came
by. We’re glad that you participated in the ongoing demystification, that
you chose to spend some of your limited time with us. We’re excited to
collaborate with you, directly or indirectly, on making the threat landscape
easier to navigate.

https://x.com/elasticseclabs
https://www.elastic.co/security-labs/behavior-rule-bug-bounty?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
https://www.elastic.co/security-labs/behavior-rule-bug-bounty?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
https://www.elastic.co/security-labs?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc
https://www.elastic.co/security?utm_source=publisher-direct&utm_medium=other-seclabs&utm_campaign=25sdee-gc

Isai Anthony
Mika Ayenson
Samir Bousseaden
Terrance DeJesus

Eric Forte
Ruben Groenewoud
Alyssa VanNice
Colson Wilhoit

The 2025 State of Detection Engineering report by Elastic
incorporates insights and expertise from various departments within
the Elastic organization. We extend our sincere gratitude to the
following Elastic employees for their valuable contributions and
dedication to producing this publication:

The success of Elastic Security’s threat research and detection engineering
is thanks to the continuous and iterative efforts of many different teams at
Elastic, including:

� Georgii Gorbachev, Marshall Main, and the Detections and
Response team

� John Uhlman and the Endpoint Protections team

� Devon Kerr and the Malware Analysis team

� Chris Donaher and the Security Data Analytics

� Joe Desimone and Justin Ibarra of Security Intelligence

� Dan Kortschak, Gabe Landau, Norrie Taylor, and Ricardo
Ungureanu of the Security Integrations team

� The Security Machine Learning team
� Kseniia Ignatovych, James Spiteri, and the rest of the Security

Product Management team

� The Threat Data Services team
� Sergey Polzunov, Jonhnathan Ribeiro, and Shashank Suryanarayana

of the Threat Research and Detection Engineering team

© 2025. Elasticsearch B.V. All Rights Reserved. You may not copy, reproduce, publish or
distribute this report, in whole or in part, without our written permission.
Elastic, Elasticsearch and other related marks are trademarks, logos or registered trademarks
of Elasticsearch B.V. in the United States and other countries. Microsoft, Azure, Windows
and other related marks are trademarks of the Microsoft group of companies. Amazon Web
Services, AWS, and other related marks are trademarks of Amazon.com, Inc. or its affiliates. All
other brand names, product names, or trademarks belong to their respective owners.

