
Custom Logs for
Elastic SIEM with ECS

February 5, 2020

Webinar Agenda:

● Elastic
● Elastic Common Schema
● Elastic SIEM
● Integrating Custom Logs

○ Part 1: ASA Logins
○ Part 2: Meraki 802.1x

● Q/A

Elastic

Elastic Solutions

• App Search
• Site Search
• Enterprise Search

Search

• Logs
• Metrics
• APM
• Uptime

Observe

• SIEM
• Endpoint Security

Protect

Elastic Stack

canvas machine learning maps reporting dashboards

and so much more

Elastic Solutions

• App Search
• Site Search
• Enterprise Search

Search

• Logs
• Metrics
• APM
• Uptime

Observe

• SIEM
• Endpoint Security

Protect

Elastic Stack

canvas machine learning maps reporting dashboards

and so much more

Elastic Common Schema

ECº

Hello
Hello
Hello
Hello
Hello
Hello

ECS in a Nutshell

ECS Benefits - Visualizations

ECº

ASA / PANW / IPTables Dashboards

Unified Firewall Reporting
Filter by vendor, type, ip, etc.

ECS Primer - agent, host, & observer

Host
Laptop - Desktop

Server - Appliance
VM / Container

Events happening on the device
(logins, sessions, services,
application logs, &c)

Metrics and states of local
resources (cpu, memory,
configs, &c)

Observer
Switch - Router
Firewall - WAF
Load Balancer

Network Sensor

External events witnessed by
or acted on by the device
(connections, traffic, user
sessions, etc.)

Metrics and measurements
about monitored or processed
traffic

Agent

Software that
relays host /

observer data

ECS Primer - Field Levels

• ECS-Core: A fully defined set of field names that exist under a defined set
of ECS top-level objects

‒ e.g.: source.ip, host.name, client.mac, etc.

• ECS-Extended: A partially defined set of field names that exist under the
same set of ECS top-level objects

‒ e.g.: source.nat.ip, client.geo.name, as.number, etc.

• Custom: An undefined set of fields that exists under a user-supplied set of
Non-ECS top-level objects

‒ e.g.: vendor.platform.field.sub-field (cisco.wlc.ssid, meraki.vpn.status)

ECS Primer - Custom Fields

Rules for Custom Fields:

● Do not use any field name that conflicts with any ECS namespace objects

● All fields must be lower case

● No special characters except underscore (_) and dot (.)

● Words are combined with underscore

● Do not use abbreviations

● Use present tense unless field describes historical information

● Use singular and plural names properly to reflect the field content

ECS Primer - Where do I start?

Start with REQUIRED fields

‒ @timestamp “Feb 03 2020 11:27:05 -5”

‒ message “raw message goes here”

‒ ecs.version 1.4.0

Then move on to the core & extended fields that best describe the event, or
the fields necessary for the use case:

event.* host.* source.* destination.* network.*

user.* observer.* client.* server.* etc.

Elastic SIEM

SIEM / ECS Key Fields

Host Overview

Fields:
host.name
host.os.*

Authentications

Fields:
user.name
event.type =

authentication_failure
 authentication_success

event.category =
 authentication

Integrating Custom Logs
Part 1: ASA Logins

ASA Logins - Overview

Admin Session
SSH / HTTPS / Console

Tracking logins to host

AAA FreeRadius

{ Future }

ASA & FreeRadius Logs

user.*
source.*

host.*
event.*

network.application.*
skipping aaa logs

ASA Logins - Step 1: Analyze what’s coming in

https://www.cisco.com/c/en/us/td/docs/security/asa/syslog/b_syslog/syslogs6.html#con_6732707

Failure

Success

https://www.cisco.com/c/en/us/td/docs/security/asa/syslog/b_syslog/syslogs6.html#con_6732707

ASA Logins - Step 2: Verify what’s coming in
Logstash ASA INPUT
input {
 udp {
 port => 5140
 type => "asa"
 }
}

Logstash ASA Output
output {
 if "60500" in [message] {
 ##DEBUG
 file {
 path => "/asa-auth.log"
 codec => "rubydebug"
 }
 }
}

Failure:
<166>2020-02-03T10:12:18-05:00 5508x-1_9.12(3) : %ASA-6-113005: AAA user authentication Rejected
: reason = AAA failure : server = 192.168.1.50 : user = dain : user IP = 192.168.1.250

<166>2020-02-03T10:12:18-05:00 5508x-1_9.12(3) : %ASA-6-611102: User authentication failed: IP
address: 192.168.1.250, Uname: dain

<166>2020-02-03T10:12:18-05:00 5508x-1_9.12(3) : %ASA-6-611102: User authentication failed: IP
address: 192.168.1.250, Uname: dain\n",

<166>2020-02-03T10:12:18-05:00 5508x-1_9.12(3) : %ASA-6-605004: Login denied from
192.168.1.250/58691 to management:192.168.1.9/ssh for user "dain”

Success:
<166>Feb 03 2020 11:27:05 5508x-1_9.12(3) : %ASA-6-113004: AAA user authentication Successful :
server = 192.168.1.50 : user = dain

<166>Feb 03 2020 11:27:05 5508x-1_9.12(3) : %ASA-6-113008: AAA transaction status ACCEPT : user
= dain

<166>Feb 03 2020 11:27:05 5508x-1_9.12(3) : %ASA-6-611101: User authentication succeeded: IP
address: 192.168.1.250, Uname: dain

<166>Feb 03 2020 11:27:05 5508x-1_9.12(3) : %ASA-6-605005: Login permitted from 192.168.1.250/59277
to management:192.168.1.9/ssh for user "dain"

ASA Logins - Step 3: Check configs

5508x-1# sh run logging

logging enable - Enable logging
logging timestamp rfc5424 - Log timestamps (no rfc5424!)
no logging hide username - Show usernames in logs
logging trap informational - Log severity 1-6
logging host management 192.168.1.50 17/5140 - Log to filebeat default port from

 ASA management interface
logging device-id string 5508x-1_9.12(3) - Custom host string includes

 Name & software version for
 ingest w/out enrichment

ASA Logins - Step 4: What’s in the log?

5508x-1_9.12(3) : %ASA-6-605005: Login permitted from 192.168.1.250/58703 to management:192.168.1.9/ssh for user "dain"

What I need to add or modify:
ecs.version = 1.4
*event.category = Login -> authentication
*event.type = permitted / denied -> authentication_success OR authentication_failure

**Custom field for ASA interface used as the destination (asa.interface.name), could add enrichment for source.ip

[host][os][name]

[host][os][version]*

[source][ip]/
[source][port][event][category]*

[asa][interface][name]** [user][name][event][severity] &
[event][code]

[host][name]

[event][type]*

[host][ip]/
[network][application]

ASA Logins - Step 5: Grok Check
{
 "[event][category]": "Login",
 "[host][os][name]": "ASA",
 "[event][code]": "605004",
 "[event][type]": "denied",
 "[source][port]": "60551",
 "[host][name]": "5508x-1",
 "[host][ip]": "192.168.1.9",
 "[network][application]": "ssh",
 "[syslog][facility]": "166",
 "[syslog][severity]": "6",
 "[host][os][version]": "9.12(3)",
 "[source][ip]": "192.168.1.250",
 "@timestamp": "Feb 03 2020 16:31:37",
 "[user][name]": "\"dain\"",
 "[asa][interface][name]": "management"
}

Grok:
<%{NUMBER:[syslog][facility]}>%{CISCOTIMESTAMP:@timestamp}
%{SYSLOGHOST:[host][name]}_%{NOTSPACE:[host][os][version]} :
%%{WORD:[host][os][name]}-%{INT:[syslog][severity]}-%{NOTSPACE:[ev
ent][code]}: %{WORD:[event][category]} %{WORD:[event][type]} from
%{IPORHOST:[source][ip]}/%{NUMBER:[source][port]} to
%{WORD:[asa][interface][name]}:%{IPORHOST:[host][ip]}/%{WORD:[net
work][application]} for user %{QS:[user][name]}

To Dos:
event.category => authentication
event.type => authentication_success/failure
event.outcome => success/failure (future SIEM)
user.name => strip quotes
ecs.version => add
user.name => enrichment?
source.ip => enrichment?

ASA Logins - Final Logstash Additions

 mutate {
 remove_field => ["host"]
 add_field => { "[ecs][version]" => "1.4" }
 }

 ## GROK WENT HERE

 if [event][category] == "Login" {
 mutate { update => { "[event][category]" => "authentication" }}
 }

 if [event][type] == "permitted" {
 mutate { update => { "[event][type]" => "authentication_success" }}
 }

 if [event][type] == "denied" {
 mutate { update => { "[event][type]" => "authentication_failure" }}
 }

 mutate {
 gsub => ["[user][name]","\"",""]
 }

● removing default host, to use host objects in Grok
● Add ecs.version

● Set event.category (per SIEM Query)

● Conditionals for event.type (per SIEM Query)● Conditionals for event.type (per SIEM Query)

● Strip quotes

Meraki 802.1x Logs

Meraki 802.1x - Overview

802.1x Login

Tracking wireless logins,
as well as sessions &

disconnect codes

AAA FreeRadius

{ future }

user.*
source.*

Meraki Events
observer.*

event.*

Meraki 802.1x - Step 1: Analyze what’s coming in

https://documentation.meraki.com/zGeneral_Administration/Monitoring_and_Reporting/Syslog_Server_Overview_and_Configuration#URL

https://documentation.meraki.com/zGeneral_Administration/Monitoring_and_Reporting/Syslog_Server_Overview_and_Configuration#URL

Meraki 802.1x - Step 2: Verify what’s coming in
Logstash Meraki INPUT
input {
 udp {
 port => 5141
 type => "meraki-dot1x"
 }
}

Logstash Meraki Output
output {
 if "8021x" in [message] {
 ##DEBUG
 file {
 path => "/meraki.log"
 codec => "rubydebug"
 }
 }
}

Failure:
<134>1 1580666566.648676097 2flr_1_ap events type=8021x_eap_failure radio='0' vap='3'
client_mac='38:F9:D3:74:E2:71' client_ip='0.0.0.0' identity='dain.perkins@elastic.co'
aid='1442808319'

If we strip out the facility <134>1 @timestamp (in nanoseconds since epoch!), ap
name and “events” we are left with key value pairs that are easy to manage!

I found Grok’ing the whole thing ended up being easier

Successful Login
<134>1 1580551704.928047208 1flr_1_ap events type=8021x_eap_success radio='1' vap='2'
client_mac='6C:96:CF:F0:BC:92' client_ip='192.168.2.109' identity='dain.perkins@elastic.co'
aid='1687088497’

Meraki 802.1x - Step 3: What’s in the log?

1flr_1_ap events type=8021x_eap_success radio='1' vap='2' client_mac='6C:96:CF:F0:BC:92' client_ip='192.168.2.109'
identity='dain.perkins@elastic.co' aid='1687088497’

Since the end of the log is KV pairs it was easy to dump into a spreadsheet to analyze

Keys: ECS Fields Description
Aid => [wireless][association.id] Wireless Session ID
Channel => [wireless][channel] Radio Channel
Client_ip => [source][ip] IP Address of client (source of auth request)

Client_mac => [source][mac] Mac Address of client (source of auth request)
Identity => [user][name] Used USEREMAIL to parse
Radio => [wireless][ap][radio_id] AP Radio ID
Type => 8021x_eap_(success/failure) evaluate for event.category & event.type
Vap => [wireless][ssid][id] SSID

To do’s:
Add Host information (Meraki AP 25.12, etc.), fix Meraki host names (should be “.” not “_”)
Enrichment of host data, user data (normalize to common naming)?

[host][name]

Meraki 802.1x - Step 4: What’s in the log?
{
 "nanos": "928047208",
 "[host][name]": "1flr_1_ap",
 "[source][mac]": "6C:96:CF:F0:BC:92",
 "[syslog][facility]": "134",
 "[source][ip]": "192.168.2.109",
 "[user][name]": "dain.perkins@elastic.co",
 "millis": "1580551704",
 "eap_outcome": "8021x_eap_success",
 "[wireless][radio][id]": "1",
 "[wireless][ssid][id]": "2"
 “[wireless][association][id]": "1687088497"
}

Grok:
<%{NUMBER:[syslog][facility]}>%{CISCOTIMESTAMP:@timestamp}
%{SYSLOGHOST:[host][name]}_%{NOTSPACE:[host][os][version]} :
%%{WORD:[host][os][name]}-%{INT:[syslog][severity]}-%{NOTSPACE:[ev
ent][code]}: %{WORD:[event][category]} %{WORD:[event][type]} from
%{IPORHOST:[source][ip]}/%{NUMBER:[source][port]} to
%{WORD:[asa][interface][name]}:%{IPORHOST:[host][ip]}/%{WORD:[net
work][application]} for user %{QS:[user][name]}

To Dos:
event.category => authentication
event.type => authentication_success/failure
event.outcome => success/failure (future SIEM)
ecs.version => add
host.* info => Meraki, AP, v25.13
user.name => normalization?
source.ip => enrichment?

Meraki 802.1x - Final Logstash Additions

 mutate {
 rename => ["host", "[host][ip]"]
 add_field => { "[ecs][version]" => "1.4" }
 }

grok went here

Set event.type based on eap authentication
 if [eap_outcome] == "8021x_eap_success" {
 mutate {
 add_field => { "[event][type]" => "authentication_success" }
 } }
 if [eap_outcome] == "8021x_eap_failure" {
 mutate {
 add_field => { "[event][type]" => "authentication_failure" }
 }}

 mutate {
 add_field => { "[event][category]" => "authentication" }
 add_field => { "[host][os][name]" => "Meraki" }
 add_field => { "[host][os][platform]" => "AP" }
 add_field => { "[host][os][version]" => "25.13" }
 add_field => { "[event][category]" => "authentication" }
 remove_field => ["millis", "nanos"]

● removing default host, to use host objects in Grok
● Add ecs.version

● Conditionals for event.type (per SIEM Query)● Conditionals for event.type (per SIEM Query)

● Add host.* and event.category fields

SIEM Check

Wrap-up

Things to remember

• Start with discrete use cases / events

• Check the SIEM app request/responses

• Work towards the visualization / filters

• Expand as necessary

Links

Elastic: www.elastic.co

Products: www.elastic.co/products

ECS Reference: https://www.elastic.co/guide/en/ecs/current/index.html

ECS Github Project: https://github.com/elastic/ecs

Discussion Group https://discuss.elastic.co/tag/elastic-common-schema

Dain’s Github*: https://github.com/dainperkins

Community: www.elastic.co/community/meetups

Twitter: @elastic

* I’ll post the logstash configs here

http://www.elastic.co
http://www.elastic.co/products
https://www.elastic.co/guide/en/ecs/current/index.html
https://github.com/elastic/ecs
https://discuss.elastic.co/tag/elastic-common-schema
https://github.com/dainperkins
http://www.elastic.co/community/meetups

Thank You

