Example: Enrich your data based on geolocation
editExample: Enrich your data based on geolocation
editgeo_match enrich policies match enrich data to incoming
documents based on a geographic location, using a
geo_shape query.
The following example creates a geo_match enrich policy that adds postal
codes to incoming documents based on a set of coordinates. It then adds the
geo_match enrich policy to a processor in an ingest pipeline.
Use the create index API to create a source index
containing at least one geo_shape field.
resp = client.indices.create(
index="postal_codes",
mappings={
"properties": {
"location": {
"type": "geo_shape"
},
"postal_code": {
"type": "keyword"
}
}
},
)
print(resp)
response = client.indices.create(
index: 'postal_codes',
body: {
mappings: {
properties: {
location: {
type: 'geo_shape'
},
postal_code: {
type: 'keyword'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "postal_codes",
mappings: {
properties: {
location: {
type: "geo_shape",
},
postal_code: {
type: "keyword",
},
},
},
});
console.log(response);
PUT /postal_codes
{
"mappings": {
"properties": {
"location": {
"type": "geo_shape"
},
"postal_code": {
"type": "keyword"
}
}
}
}
Use the index API to index enrich data to this source index.
resp = client.index(
index="postal_codes",
id="1",
refresh="wait_for",
document={
"location": {
"type": "envelope",
"coordinates": [
[
13,
53
],
[
14,
52
]
]
},
"postal_code": "96598"
},
)
print(resp)
response = client.index(
index: 'postal_codes',
id: 1,
refresh: 'wait_for',
body: {
location: {
type: 'envelope',
coordinates: [
[
13,
53
],
[
14,
52
]
]
},
postal_code: '96598'
}
)
puts response
const response = await client.index({
index: "postal_codes",
id: 1,
refresh: "wait_for",
document: {
location: {
type: "envelope",
coordinates: [
[13, 53],
[14, 52],
],
},
postal_code: "96598",
},
});
console.log(response);
PUT /postal_codes/_doc/1?refresh=wait_for
{
"location": {
"type": "envelope",
"coordinates": [ [ 13.0, 53.0 ], [ 14.0, 52.0 ] ]
},
"postal_code": "96598"
}
Use the create enrich policy API to create
an enrich policy with the geo_match policy type. This policy must include:
- One or more source indices
-
A
match_field, thegeo_shapefield from the source indices used to match incoming documents - Enrich fields from the source indices you’d like to append to incoming documents
resp = client.enrich.put_policy(
name="postal_policy",
geo_match={
"indices": "postal_codes",
"match_field": "location",
"enrich_fields": [
"location",
"postal_code"
]
},
)
print(resp)
response = client.enrich.put_policy(
name: 'postal_policy',
body: {
geo_match: {
indices: 'postal_codes',
match_field: 'location',
enrich_fields: [
'location',
'postal_code'
]
}
}
)
puts response
const response = await client.enrich.putPolicy({
name: "postal_policy",
geo_match: {
indices: "postal_codes",
match_field: "location",
enrich_fields: ["location", "postal_code"],
},
});
console.log(response);
PUT /_enrich/policy/postal_policy
{
"geo_match": {
"indices": "postal_codes",
"match_field": "location",
"enrich_fields": [ "location", "postal_code" ]
}
}
Use the execute enrich policy API to create an enrich index for the policy.
POST /_enrich/policy/postal_policy/_execute?wait_for_completion=false
Use the create or update pipeline API to create an ingest pipeline. In the pipeline, add an enrich processor that includes:
- Your enrich policy.
-
The
fieldof incoming documents used to match the geoshape of documents from the enrich index. -
The
target_fieldused to store appended enrich data for incoming documents. This field contains thematch_fieldandenrich_fieldsspecified in your enrich policy. -
The
shape_relation, which indicates how the processor matches geoshapes in incoming documents to geoshapes in documents from the enrich index. See Spatial Relations for valid options and more information.
resp = client.ingest.put_pipeline(
id="postal_lookup",
processors=[
{
"enrich": {
"description": "Add 'geo_data' based on 'geo_location'",
"policy_name": "postal_policy",
"field": "geo_location",
"target_field": "geo_data",
"shape_relation": "INTERSECTS"
}
}
],
)
print(resp)
const response = await client.ingest.putPipeline({
id: "postal_lookup",
processors: [
{
enrich: {
description: "Add 'geo_data' based on 'geo_location'",
policy_name: "postal_policy",
field: "geo_location",
target_field: "geo_data",
shape_relation: "INTERSECTS",
},
},
],
});
console.log(response);
PUT /_ingest/pipeline/postal_lookup
{
"processors": [
{
"enrich": {
"description": "Add 'geo_data' based on 'geo_location'",
"policy_name": "postal_policy",
"field": "geo_location",
"target_field": "geo_data",
"shape_relation": "INTERSECTS"
}
}
]
}
Use the ingest pipeline to index a document. The incoming document should
include the field specified in your enrich processor.
resp = client.index(
index="users",
id="0",
pipeline="postal_lookup",
document={
"first_name": "Mardy",
"last_name": "Brown",
"geo_location": "POINT (13.5 52.5)"
},
)
print(resp)
const response = await client.index({
index: "users",
id: 0,
pipeline: "postal_lookup",
document: {
first_name: "Mardy",
last_name: "Brown",
geo_location: "POINT (13.5 52.5)",
},
});
console.log(response);
PUT /users/_doc/0?pipeline=postal_lookup
{
"first_name": "Mardy",
"last_name": "Brown",
"geo_location": "POINT (13.5 52.5)"
}
To verify the enrich processor matched and appended the appropriate field data, use the get API to view the indexed document.
resp = client.get(
index="users",
id="0",
)
print(resp)
response = client.get( index: 'users', id: 0 ) puts response
const response = await client.get({
index: "users",
id: 0,
});
console.log(response);
GET /users/_doc/0
The API returns the following response:
{
"found": true,
"_index": "users",
"_id": "0",
"_version": 1,
"_seq_no": 55,
"_primary_term": 1,
"_source": {
"geo_data": {
"location": {
"type": "envelope",
"coordinates": [[13.0, 53.0], [14.0, 52.0]]
},
"postal_code": "96598"
},
"first_name": "Mardy",
"last_name": "Brown",
"geo_location": "POINT (13.5 52.5)"
}
}