模糊性评分编辑

用户喜欢模糊查询。他们认为这种查询会魔法般的找到正确拼写组合。 很遗憾,实际效果平平。

假设我们有1000个文档包含 ``Schwarzenegger`` ,只是一个文档的出现拼写错误 ``Schwarzeneger`` 。 根据 term frequency/inverse document frequency 理论,这个拼写错误文档比拼写正确的相关度更高,因为错误拼写出现在更少的文档中!

换句话说,如果我们对待模糊匹配 类似其他匹配方法,我们将偏爱错误的拼写超过了正确的拼写,这会让用户抓狂。

提示

模糊匹配不应用于参与评分--只能在有拼写错误时扩大匹配项的范围。

默认情况下, match 查询给定所有的模糊匹配的恒定评分为1。这可以满足在结果列表的末尾添加潜在的匹配记录,并且没有干扰非模糊查询的相关性评分。

提示

在模糊查询最初出现时很少能单独使用。他们更好的作为一个 ``bigger`` 场景的部分功能特性,如 search-as-you-type 完成 建议did-you-mean 短语 建议