基于“深度”度量排序编辑

在前面的示例中,度量是桶的直接子节点。平均售价是根据每个 term 来计算的。 在一定条件下,我们也有可能对 更深 的度量进行排序,比如孙子桶或从孙桶。

我们可以定义更深的路径,将度量用尖括号( > )嵌套起来,像这样: my_bucket>another_bucket>metric

需要提醒的是嵌套路径上的每个桶都必须是 单值 的。 filter 桶生成 一个单值桶:所有与过滤条件匹配的文档都在桶中。 多值桶(如:terms )动态生成许多桶,无法通过指定一个确定路径来识别。

目前,只有三个单值桶: filterglobal reverse_nested 。让我们快速用示例说明,创建一个汽车售价的直方图,但是按照红色和绿色(不包括蓝色)车各自的方差来排序:

GET /cars/transactions/_search
{
    "size" : 0,
    "aggs" : {
        "colors" : {
            "histogram" : {
              "field" : "price",
              "interval": 20000,
              "order": {
                "red_green_cars>stats.variance" : "asc" 
              }
            },
            "aggs": {
                "red_green_cars": {
                    "filter": { "terms": {"color": ["red", "green"]}}, 
                    "aggs": {
                        "stats": {"extended_stats": {"field" : "price"}} 
                    }
                }
            }
        }
    }
}

按照嵌套度量的方差对桶的直方图进行排序。

因为我们使用单值过滤器 filter ,我们可以使用嵌套排序。

按照生成的度量对统计结果进行排序。

本例中,可以看到我们如何访问一个嵌套的度量。 stats 度量是 red_green_cars 聚合的子节点,而 red_green_cars 又是 colors 聚合的子节点。 为了根据这个度量排序,我们定义了路径 red_green_cars>stats.variance 。我们可以这么做,因为 filter 桶是个单值桶。