01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

BFPDoor ELF

\

If path of hardcoded file name at path /var/
run/ doesn’t exist continue otherwise exit.

l

If the user is root continue otherwise exit.

|

If the binary was invoked with
arguments (argc greater than 1), then
continue, otherwise call to_open to copy

and restart itself.

If the to_open function returns a O or
successful value continue otherwise

exit program.

Call the to_open function passing the
hardcoded name of the process to be
spawned.

A

Initialize cfg struct memory removing
any garbage data using bzero to prep
the struct for use.

l

Seed the psuedo-random number
generator with the Unix system time.

!

Formats and executes shell commands to copy itself (with the hardcoded name)

to /dev/shm, alter the permissions of the copy to make it executable, run the copy Returns O denoting

(with an extra command line argument) and then delete the original. It will sleep success if path of pid or
for 2 seconds then check again to make sure it can access the pid path. If any of lock file can be accessed
the shell commands fail, the program will exit with an error code. Otherwise it and file exists.

exits with success and execution restarts in the copy.

Randomly select one of the string values in the array and copy it to the “mask”

variable in the cfg struct.

"[sbin/udevd -d",
"[sbin/mingetty /dev/tty7",

"Jusr/sbin/console-kit-daemon --no-daemon",

"hald-addon-acpi: listening on acpi kernel interface /proc/acpi/event”,

"dbus-daemon --system’,
"hald-runner”,

"pickup -I -t fifo -u",
"avahi-daemon: chroot helper",
"/sbin/auditd -n",

"[usr/lib/systemd/systemd-journald"

!

Copy the contents of a character array,
containing hardcoded password to the
“pass” variable in the cfg struct.

l

Copy the contents of another character
array, containing a second hardcoded
password to the “pass2” variable in the

cfg struct.

Call the setup_time function and pass
the initial file name as an argument.

l

Call the set_proc_name function and
pass the amount and contents of the
commandline arguments along with the
variable value of cfg.mask set in block

#8 above.

Creates a new child process with fork.
Parent exits and execution continues in
new pid. Child will be reparented to pid 1.

l

Call the init_signal function.

l

Call the signal function passing the
SIGCHLD option and sig_child function

name

Set the value of the variable named
godpid equal to the current pid by calling
the getpid function.

l

Create file specfied by the pid_path
variable and set its permissions (644)

l

Call the signal function passing the
SIGCHLD and SIG_IGN options.

l

Call the setsid function.

l

Call the packet_loop function

l

Return O

Sets the file access and modification times to
Thursday Oct 30 7:16 pm 2008

. Copies the contents of the
Caclulates the process Allocates the process environment

environment size size in memory
space allocated

Registers a function (terminate) to be called upon at
normal process termination that cleans up the
process and removes the pid file

Registers a function(sig_child) to be called upon when
a child process has stopped or terminated to clean it up
also known as reaping

Returns process id of the calling process

Sets the action for SIGCHLD to SIG_IGN so that ignoring
SIGCHLD can be used to prevent the creation of zombies.

Sets the process group ID and session ID of the process
to the PID of the calling process

Define an array containing Builds a raw socket that Attach the defined bpf
a series of bpf (Berkely binds to the NIC to receive filter to the newly created
Packet Filters) opcodes ethernet frames raw socket

Zeroes out the contents of the old
process enviornment

environment into the new memory

Enter an infinite while loop

l

Receive one packet at a

time from the socket into a

zeroed stack buffer

l

Discard ethernet frame

header

Calculates the size of the IP

packet and continue only if
the size is less than 20

l

Parse the packet with
custom structs for IP, TCP
and UDP headers

l

If TCP, UDP or ICMP is
detected, populate “magic
packet” data structure

Magic Packet Workflow
——>| Detailed on Attached
Diagram

Copies the new commandline
argument value (Block #8) into the
new allocated memory space

Sets the name of the process to
the newly supplied value

If magic packet is detected

\

Creates a new child process with fork.
Parent waits while execution continues in

new pid.

If IP address was detected in magic
packet, store for outgoing pingback/shell.
Otherwise store source IP from IP header.

\

Change working directory to / (root) and
call the setsid function to become a
session leader.

Call the signal function passing the
SIGHUP and SIG_DFL options.

\

Zeroes out the contents of the processes

argv.

Copies the hardcoded string containing
the fake process nhame into argv’s memory

location.

Sets the name of its process to the newly
supplied value.

Initialize rc4 functions with supplied
password in magic packet to set up rc4
encrypt and decrypt for all shell
communications.

Call the logon function and pass the
password value retrieved from the magic
packet assigning the return value of the
function to the variable cmp.

WV

Switch Statement matching against the
value returned from teh logon function
assigned to the cmp variable.

Sets the process group ID and session ID of the process

to the PID of the calling process.

Sets the action for SIGHUP to SIG_DFL so that the default
action is taken when the SIGHUP signal is called

Compare the password
value against the
passwords hardcoded in
the main function

Case 1: If the return value
is 1 call the getshell
function passing the
source ip and packet
destination port

Selects a the first available
port between 42391 and
43391 and bind a new
listening TCP socket

Executes two iptables
commands to redirect
traffic from the attacker on
the legitimate TCP port to
the one where bpfdoor is
listening

calls accept() and waits
for a connection, then
calls shell. On connection,
removes the iptables rules
before creating the shell.

If the password matches
the value stored in the
cfg.pass variable return O

Case O: If the return value
is O call the try_link
function passing the
packet ip and port then
assign the return value of
the function to a variable
named scli

Creates a new outgoing
tcp socket and attempts to
establish a connection
using the provided ip and
port. On connection, call
shell

Before connecting the
shell to the socket, send
the ASCIl numbers “3458"
across the socket.

Spawns a pseudo-tty pair.

If tty creation fails, forks a
child process. The child
connects the socket to the
standard io streams then
executes a shell. The
parent exits.

If the password matches

> the value stored in the > Otherwise return 2
cfg.pass2 variable return 1

Case 2: If the return value

> is 2 call the mon function
passing the packet ip and
port

Creates a hew udp socket
and sends back a single
ASCIl character 1 (0x31)
to the calling host

Shell Default Environment Variables

home : HOME=/tmp

ps : PS1=[\u@\h \WI\\$

histfile : HISTFILE=/dev/null

mshist : MYSQL_HISTFILE=/dev/null

ipath : PATH=/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/sbin:/usr/bin:/usr/sbin:/
usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:./bin

The parent enters a loop,
using select() to read from
the socket and write to the
end of the pty connected
to the shell. It also reads
responses from the pty
and writes them to the
socket. Comms are
encrypted using RC4 with
the password as the key.

Forks a child process.
Connects one end of the
pty, cleans up, and then
executes a shell using the
custom environment.



